காரணி
\left(5-x\right)\left(x+7\right)
மதிப்பிடவும்
\left(5-x\right)\left(x+7\right)
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
a+b=-2 ab=-35=-35
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை -x^{2}+ax+bx+35-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-35 5,-7
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -35 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-35=-34 5-7=-2
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=5 b=-7
-2 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(-x^{2}+5x\right)+\left(-7x+35\right)
-x^{2}-2x+35 என்பதை \left(-x^{2}+5x\right)+\left(-7x+35\right) என மீண்டும் எழுதவும்.
x\left(-x+5\right)+7\left(-x+5\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 7-ஐக் காரணிப்படுத்தவும்.
\left(-x+5\right)\left(x+7\right)
பரவல் பண்பைப் பயன்படுத்தி -x+5 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
-x^{2}-2x+35=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 35}}{2\left(-1\right)}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 35}}{2\left(-1\right)}
-2-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 35}}{2\left(-1\right)}
-1-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{4+140}}{2\left(-1\right)}
35-ஐ 4 முறை பெருக்கவும்.
x=\frac{-\left(-2\right)±\sqrt{144}}{2\left(-1\right)}
140-க்கு 4-ஐக் கூட்டவும்.
x=\frac{-\left(-2\right)±12}{2\left(-1\right)}
144-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{2±12}{2\left(-1\right)}
-2-க்கு எதிரில் இருப்பது 2.
x=\frac{2±12}{-2}
-1-ஐ 2 முறை பெருக்கவும்.
x=\frac{14}{-2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{2±12}{-2}-ஐத் தீர்க்கவும். 12-க்கு 2-ஐக் கூட்டவும்.
x=-7
14-ஐ -2-ஆல் வகுக்கவும்.
x=-\frac{10}{-2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{2±12}{-2}-ஐத் தீர்க்கவும். 2–இலிருந்து 12–ஐக் கழிக்கவும்.
x=5
-10-ஐ -2-ஆல் வகுக்கவும்.
-x^{2}-2x+35=-\left(x-\left(-7\right)\right)\left(x-5\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு -7-ஐயும், x_{2}-க்கு 5-ஐயும் பதிலீடு செய்யவும்.
-x^{2}-2x+35=-\left(x+7\right)\left(x-5\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}