x-க்காகத் தீர்க்கவும்
x=-\frac{1}{3}\approx -0.333333333
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
-3x\left(2+3x\right)=1
-x மற்றும் 4x-ஐ இணைத்தால், தீர்வு 3x.
-6x-9x^{2}=1
-3x-ஐ 2+3x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
-6x-9x^{2}-1=0
இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும்.
-9x^{2}-6x-1=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக -9, b-க்குப் பதிலாக -6 மற்றும் c-க்குப் பதிலாக -1-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
-6-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{36+36\left(-1\right)}}{2\left(-9\right)}
-9-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-9\right)}
-1-ஐ 36 முறை பெருக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-9\right)}
-36-க்கு 36-ஐக் கூட்டவும்.
x=-\frac{-6}{2\left(-9\right)}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{6}{2\left(-9\right)}
-6-க்கு எதிரில் இருப்பது 6.
x=\frac{6}{-18}
-9-ஐ 2 முறை பெருக்கவும்.
x=-\frac{1}{3}
6-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{6}{-18}-ஐ குறைந்த படிக்கு குறைக்கவும்.
-3x\left(2+3x\right)=1
-x மற்றும் 4x-ஐ இணைத்தால், தீர்வு 3x.
-6x-9x^{2}=1
-3x-ஐ 2+3x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
-9x^{2}-6x=1
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{-9x^{2}-6x}{-9}=\frac{1}{-9}
இரு பக்கங்களையும் -9-ஆல் வகுக்கவும்.
x^{2}+\left(-\frac{6}{-9}\right)x=\frac{1}{-9}
-9-ஆல் வகுத்தல் -9-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+\frac{2}{3}x=\frac{1}{-9}
3-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-6}{-9}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}+\frac{2}{3}x=-\frac{1}{9}
1-ஐ -9-ஆல் வகுக்கவும்.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(\frac{1}{3}\right)^{2}
\frac{1}{3}-ஐப் பெற, x உறுப்பின் ஈவான \frac{2}{3}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{1}{3}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{1}{3}-ஐ வர்க்கமாக்கவும்.
x^{2}+\frac{2}{3}x+\frac{1}{9}=0
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{1}{9} உடன் -\frac{1}{9}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x+\frac{1}{3}\right)^{2}=0
காரணி x^{2}+\frac{2}{3}x+\frac{1}{9}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{0}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{1}{3}=0 x+\frac{1}{3}=0
எளிமையாக்கவும்.
x=-\frac{1}{3} x=-\frac{1}{3}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{3}-ஐக் கழிக்கவும்.
x=-\frac{1}{3}
இப்போது சமன்பாடு தீர்க்கப்பட்டது. தீர்வுகள் ஒன்றுதான்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}