z-க்காகத் தீர்க்கவும்
z=\frac{-\sqrt{839}i+1}{4}\approx 0.25-7.241374179i
z=\frac{1+\sqrt{839}i}{4}\approx 0.25+7.241374179i
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
-2z^{2}+z-105=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
z=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\left(-105\right)}}{2\left(-2\right)}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக -2, b-க்குப் பதிலாக 1 மற்றும் c-க்குப் பதிலாக -105-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
z=\frac{-1±\sqrt{1-4\left(-2\right)\left(-105\right)}}{2\left(-2\right)}
1-ஐ வர்க்கமாக்கவும்.
z=\frac{-1±\sqrt{1+8\left(-105\right)}}{2\left(-2\right)}
-2-ஐ -4 முறை பெருக்கவும்.
z=\frac{-1±\sqrt{1-840}}{2\left(-2\right)}
-105-ஐ 8 முறை பெருக்கவும்.
z=\frac{-1±\sqrt{-839}}{2\left(-2\right)}
-840-க்கு 1-ஐக் கூட்டவும்.
z=\frac{-1±\sqrt{839}i}{2\left(-2\right)}
-839-இன் வர்க்க மூலத்தை எடுக்கவும்.
z=\frac{-1±\sqrt{839}i}{-4}
-2-ஐ 2 முறை பெருக்கவும்.
z=\frac{-1+\sqrt{839}i}{-4}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு z=\frac{-1±\sqrt{839}i}{-4}-ஐத் தீர்க்கவும். i\sqrt{839}-க்கு -1-ஐக் கூட்டவும்.
z=\frac{-\sqrt{839}i+1}{4}
-1+i\sqrt{839}-ஐ -4-ஆல் வகுக்கவும்.
z=\frac{-\sqrt{839}i-1}{-4}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு z=\frac{-1±\sqrt{839}i}{-4}-ஐத் தீர்க்கவும். -1–இலிருந்து i\sqrt{839}–ஐக் கழிக்கவும்.
z=\frac{1+\sqrt{839}i}{4}
-1-i\sqrt{839}-ஐ -4-ஆல் வகுக்கவும்.
z=\frac{-\sqrt{839}i+1}{4} z=\frac{1+\sqrt{839}i}{4}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
-2z^{2}+z-105=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
-2z^{2}+z-105-\left(-105\right)=-\left(-105\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 105-ஐக் கூட்டவும்.
-2z^{2}+z=-\left(-105\right)
-105-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
-2z^{2}+z=105
0–இலிருந்து -105–ஐக் கழிக்கவும்.
\frac{-2z^{2}+z}{-2}=\frac{105}{-2}
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
z^{2}+\frac{1}{-2}z=\frac{105}{-2}
-2-ஆல் வகுத்தல் -2-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
z^{2}-\frac{1}{2}z=\frac{105}{-2}
1-ஐ -2-ஆல் வகுக்கவும்.
z^{2}-\frac{1}{2}z=-\frac{105}{2}
105-ஐ -2-ஆல் வகுக்கவும்.
z^{2}-\frac{1}{2}z+\left(-\frac{1}{4}\right)^{2}=-\frac{105}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{1}{2}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{1}{4}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
z^{2}-\frac{1}{2}z+\frac{1}{16}=-\frac{105}{2}+\frac{1}{16}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{1}{4}-ஐ வர்க்கமாக்கவும்.
z^{2}-\frac{1}{2}z+\frac{1}{16}=-\frac{839}{16}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{1}{16} உடன் -\frac{105}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(z-\frac{1}{4}\right)^{2}=-\frac{839}{16}
காரணி z^{2}-\frac{1}{2}z+\frac{1}{16}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(z-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{839}{16}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
z-\frac{1}{4}=\frac{\sqrt{839}i}{4} z-\frac{1}{4}=-\frac{\sqrt{839}i}{4}
எளிமையாக்கவும்.
z=\frac{1+\sqrt{839}i}{4} z=\frac{-\sqrt{839}i+1}{4}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{1}{4}-ஐக் கூட்டவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}