பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-6=-xx+x\times 5
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் x-ஆல் பெருக்கவும்.
-6=-x^{2}+x\times 5
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
-x^{2}+x\times 5=-6
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
-x^{2}+x\times 5+6=0
இரண்டு பக்கங்களிலும் 6-ஐச் சேர்க்கவும்.
-x^{2}+5x+6=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக -1, b-க்குப் பதிலாக 5 மற்றும் c-க்குப் பதிலாக 6-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 6}}{2\left(-1\right)}
5-ஐ வர்க்கமாக்கவும்.
x=\frac{-5±\sqrt{25+4\times 6}}{2\left(-1\right)}
-1-ஐ -4 முறை பெருக்கவும்.
x=\frac{-5±\sqrt{25+24}}{2\left(-1\right)}
6-ஐ 4 முறை பெருக்கவும்.
x=\frac{-5±\sqrt{49}}{2\left(-1\right)}
24-க்கு 25-ஐக் கூட்டவும்.
x=\frac{-5±7}{2\left(-1\right)}
49-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-5±7}{-2}
-1-ஐ 2 முறை பெருக்கவும்.
x=\frac{2}{-2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-5±7}{-2}-ஐத் தீர்க்கவும். 7-க்கு -5-ஐக் கூட்டவும்.
x=-1
2-ஐ -2-ஆல் வகுக்கவும்.
x=-\frac{12}{-2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-5±7}{-2}-ஐத் தீர்க்கவும். -5–இலிருந்து 7–ஐக் கழிக்கவும்.
x=6
-12-ஐ -2-ஆல் வகுக்கவும்.
x=-1 x=6
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
-6=-xx+x\times 5
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் x-ஆல் பெருக்கவும்.
-6=-x^{2}+x\times 5
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
-x^{2}+x\times 5=-6
எல்லா மாறி உறுப்புகளும் இடது கை பக்கத்தில் இருக்குமாறு பக்கங்களை மாற்றவும்.
-x^{2}+5x=-6
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{-x^{2}+5x}{-1}=-\frac{6}{-1}
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x^{2}+\frac{5}{-1}x=-\frac{6}{-1}
-1-ஆல் வகுத்தல் -1-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-5x=-\frac{6}{-1}
5-ஐ -1-ஆல் வகுக்கவும்.
x^{2}-5x=6
-6-ஐ -1-ஆல் வகுக்கவும்.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2}-ஐப் பெற, x உறுப்பின் ஈவான -5-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{5}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-5x+\frac{25}{4}=6+\frac{25}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{5}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}-5x+\frac{25}{4}=\frac{49}{4}
\frac{25}{4}-க்கு 6-ஐக் கூட்டவும்.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{4}
காரணி x^{2}-5x+\frac{25}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{5}{2}=\frac{7}{2} x-\frac{5}{2}=-\frac{7}{2}
எளிமையாக்கவும்.
x=6 x=-1
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{5}{2}-ஐக் கூட்டவும்.