பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x^{2}+x-2=4
x+2-ஐ x-1-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
x^{2}+x-2-4=0
இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும்.
x^{2}+x-6=0
-2-இலிருந்து 4-ஐக் கழிக்கவும், தீர்வு -6.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக 1 மற்றும் c-க்குப் பதிலாக -6-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
1-ஐ வர்க்கமாக்கவும்.
x=\frac{-1±\sqrt{1+24}}{2}
-6-ஐ -4 முறை பெருக்கவும்.
x=\frac{-1±\sqrt{25}}{2}
24-க்கு 1-ஐக் கூட்டவும்.
x=\frac{-1±5}{2}
25-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{4}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-1±5}{2}-ஐத் தீர்க்கவும். 5-க்கு -1-ஐக் கூட்டவும்.
x=2
4-ஐ 2-ஆல் வகுக்கவும்.
x=-\frac{6}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-1±5}{2}-ஐத் தீர்க்கவும். -1–இலிருந்து 5–ஐக் கழிக்கவும்.
x=-3
-6-ஐ 2-ஆல் வகுக்கவும்.
x=2 x=-3
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x^{2}+x-2=4
x+2-ஐ x-1-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
x^{2}+x=4+2
இரண்டு பக்கங்களிலும் 2-ஐச் சேர்க்கவும்.
x^{2}+x=6
4 மற்றும் 2-ஐக் கூட்டவும், தீர்வு 6.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
\frac{1}{2}-ஐப் பெற, x உறுப்பின் ஈவான 1-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{1}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{1}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
\frac{1}{4}-க்கு 6-ஐக் கூட்டவும்.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
காரணி x^{2}+x+\frac{1}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
எளிமையாக்கவும்.
x=2 x=-3
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{2}-ஐக் கழிக்கவும்.