x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
x=-2
x=\frac{5+3\sqrt{3}i}{2}\approx 2.5+2.598076211i
x=\frac{-3\sqrt{3}i+5}{2}\approx 2.5-2.598076211i
x-க்காகத் தீர்க்கவும்
x=-2
விளக்கப்படம்
வினாடி வினா
Polynomial
( x - 1 ) ^ { 3 } = - 27
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
x^{3}-3x^{2}+3x-1=-27
\left(x-1\right)^{3}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} பயன்படுத்தவும்.
x^{3}-3x^{2}+3x-1+27=0
இரண்டு பக்கங்களிலும் 27-ஐச் சேர்க்கவும்.
x^{3}-3x^{2}+3x+26=0
-1 மற்றும் 27-ஐக் கூட்டவும், தீர்வு 26.
±26,±13,±2,±1
பிரிப்பு வர்க்கத் தேற்றத்தின்படி, அடுக்குக்கோவையின் எல்லா பிரிப்பு வர்க்கங்களும் \frac{p}{q} வடிவத்தில் இருக்கும், அதில் p ஆனது நிலையான 26-ஐ வகுக்கிறது மற்றும் q ஆனது மதிப்பில் பெரிய கெழுவான 1-ஐ வகுக்கிறது. அனைத்து விண்ணப்பதாரர்களின் பட்டியல் \frac{p}{q}.
x=-2
முழுமையான மிகச்சிறிய மதிப்பிலிருந்து தொடங்கி, முழு எண் மதிப்புகளை முயல்வதன் மூலம் அத்தகைய ஒரு வர்க்கத்தைக் கண்டறியவும். முழு எண் வர்க்கங்கள் கண்டறியப்படவில்லை என்றால், பின்னங்களை முயலவும்.
x^{2}-5x+13=0
காரணி தேற்றத்தின்படி, ஒவ்வொரு வர்க்க k-க்கும் x-k-ஆனது அடுக்குக் கோவையின் காரணியாகும். x^{2}-5x+13-ஐப் பெற, x+2-ஐ x^{3}-3x^{2}+3x+26-ஆல் வகுக்கவும். முடிவுகள் 0-க்குச் சமமாக உள்ளபோது சமன்பாட்டைத் தீர்க்கவும்.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 13}}{2}
ax^{2}+bx+c=0 வடிவத்தில் உள்ள எல்லாச் சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தி தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரத்தில் a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -5 மற்றும் c-க்கு பதிலாக 13-ஐ பதிலீடு செய்யவும்.
x=\frac{5±\sqrt{-27}}{2}
கணக்கீடுகளைச் செய்யவும்.
x=\frac{-3i\sqrt{3}+5}{2} x=\frac{5+3i\sqrt{3}}{2}
± நேர் எண்ணிலும் ± எதிர் எண்ணிலும் உள்ளபோது, சமன்பாடு x^{2}-5x+13=0-ஐச் சரிசெய்யவும்.
x=-2 x=\frac{-3i\sqrt{3}+5}{2} x=\frac{5+3i\sqrt{3}}{2}
காணப்படும் தீர்வுகள் அனைத்தையும் பட்டியலிடவும்.
x^{3}-3x^{2}+3x-1=-27
\left(x-1\right)^{3}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} பயன்படுத்தவும்.
x^{3}-3x^{2}+3x-1+27=0
இரண்டு பக்கங்களிலும் 27-ஐச் சேர்க்கவும்.
x^{3}-3x^{2}+3x+26=0
-1 மற்றும் 27-ஐக் கூட்டவும், தீர்வு 26.
±26,±13,±2,±1
பிரிப்பு வர்க்கத் தேற்றத்தின்படி, அடுக்குக்கோவையின் எல்லா பிரிப்பு வர்க்கங்களும் \frac{p}{q} வடிவத்தில் இருக்கும், அதில் p ஆனது நிலையான 26-ஐ வகுக்கிறது மற்றும் q ஆனது மதிப்பில் பெரிய கெழுவான 1-ஐ வகுக்கிறது. அனைத்து விண்ணப்பதாரர்களின் பட்டியல் \frac{p}{q}.
x=-2
முழுமையான மிகச்சிறிய மதிப்பிலிருந்து தொடங்கி, முழு எண் மதிப்புகளை முயல்வதன் மூலம் அத்தகைய ஒரு வர்க்கத்தைக் கண்டறியவும். முழு எண் வர்க்கங்கள் கண்டறியப்படவில்லை என்றால், பின்னங்களை முயலவும்.
x^{2}-5x+13=0
காரணி தேற்றத்தின்படி, ஒவ்வொரு வர்க்க k-க்கும் x-k-ஆனது அடுக்குக் கோவையின் காரணியாகும். x^{2}-5x+13-ஐப் பெற, x+2-ஐ x^{3}-3x^{2}+3x+26-ஆல் வகுக்கவும். முடிவுகள் 0-க்குச் சமமாக உள்ளபோது சமன்பாட்டைத் தீர்க்கவும்.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 13}}{2}
ax^{2}+bx+c=0 வடிவத்தில் உள்ள எல்லாச் சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தி தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரத்தில் a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -5 மற்றும் c-க்கு பதிலாக 13-ஐ பதிலீடு செய்யவும்.
x=\frac{5±\sqrt{-27}}{2}
கணக்கீடுகளைச் செய்யவும்.
x\in \emptyset
எதிர்மறை எண்ணின் கனமூலம் அசல் புலத்தில் வரையறுக்கப்படவில்லை என்பதால், தீர்வுகள் கிடைக்காது.
x=-2
காணப்படும் தீர்வுகள் அனைத்தையும் பட்டியலிடவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}