மதிப்பிடவும்
-2y^{4}
விரி
-2y^{4}
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
x+y-ஐ x-y-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)-ஐக் கருத்தில் கொள்ளவும். பின்வரும் விதியைப் பயன்படுத்தி, பெருக்கலை வர்க்கங்களின் வேறுபாடுகளுக்கு மாற்றலாம்: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-\left(y^{2}\right)^{2}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 4-ஐப் பெற, 2 மற்றும் 2-ஐப் பெருக்கவும்.
x^{4}-y^{4}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 4-ஐப் பெற, 2 மற்றும் 2-ஐப் பெருக்கவும்.
x^{4}-y^{4}+x^{2}y^{2}-x^{4}-y^{2}\left(x^{2}+y^{2}\right)
x^{2}-ஐ y^{2}-x^{2}-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
-y^{4}+x^{2}y^{2}-y^{2}\left(x^{2}+y^{2}\right)
x^{4} மற்றும் -x^{4}-ஐ இணைத்தால், தீர்வு 0.
-y^{4}+x^{2}y^{2}-\left(y^{2}x^{2}+y^{4}\right)
y^{2}-ஐ x^{2}+y^{2}-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
-y^{4}+x^{2}y^{2}-y^{2}x^{2}-y^{4}
y^{2}x^{2}+y^{4}-இன் எதிர்ச்சொல்லைக் கண்டறிய, ஒவ்வொரு வார்த்தையின் எதிர்ச்சொல்லையும் கண்டறியவும்.
-y^{4}-y^{4}
x^{2}y^{2} மற்றும் -y^{2}x^{2}-ஐ இணைத்தால், தீர்வு 0.
-2y^{4}
-y^{4} மற்றும் -y^{4}-ஐ இணைத்தால், தீர்வு -2y^{4}.
\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
x+y-ஐ x-y-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)-ஐக் கருத்தில் கொள்ளவும். பின்வரும் விதியைப் பயன்படுத்தி, பெருக்கலை வர்க்கங்களின் வேறுபாடுகளுக்கு மாற்றலாம்: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{4}-\left(y^{2}\right)^{2}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 4-ஐப் பெற, 2 மற்றும் 2-ஐப் பெருக்கவும்.
x^{4}-y^{4}+x^{2}\left(y^{2}-x^{2}\right)-y^{2}\left(x^{2}+y^{2}\right)
ஒரு எண்ணின் அடுக்கை மற்றொரு அடுக்குக்கு உயர்த்த, அடுக்குகளைப் பெருக்கவும். 4-ஐப் பெற, 2 மற்றும் 2-ஐப் பெருக்கவும்.
x^{4}-y^{4}+x^{2}y^{2}-x^{4}-y^{2}\left(x^{2}+y^{2}\right)
x^{2}-ஐ y^{2}-x^{2}-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
-y^{4}+x^{2}y^{2}-y^{2}\left(x^{2}+y^{2}\right)
x^{4} மற்றும் -x^{4}-ஐ இணைத்தால், தீர்வு 0.
-y^{4}+x^{2}y^{2}-\left(y^{2}x^{2}+y^{4}\right)
y^{2}-ஐ x^{2}+y^{2}-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
-y^{4}+x^{2}y^{2}-y^{2}x^{2}-y^{4}
y^{2}x^{2}+y^{4}-இன் எதிர்ச்சொல்லைக் கண்டறிய, ஒவ்வொரு வார்த்தையின் எதிர்ச்சொல்லையும் கண்டறியவும்.
-y^{4}-y^{4}
x^{2}y^{2} மற்றும் -y^{2}x^{2}-ஐ இணைத்தால், தீர்வு 0.
-2y^{4}
-y^{4} மற்றும் -y^{4}-ஐ இணைத்தால், தீர்வு -2y^{4}.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}