பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x^{2}+10x+25=0
\left(x+5\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a+b\right)^{2}=a^{2}+2ab+b^{2} பயன்படுத்தவும்.
a+b=10 ab=25
சமன்பாட்டைத் தீர்க்க, x^{2}+10x+25 காரணியானது x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) சூத்திரத்தைப் பயன்படுத்துகிறது. a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,25 5,5
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 25 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+25=26 5+5=10
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=5 b=5
10 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x+5\right)\left(x+5\right)
பெறப்பட்ட மதிப்புகளைப் பயன்படுத்தி பின்னக் கோவை \left(x+a\right)\left(x+b\right)-ஐ மீண்டும் எழுதவும்.
\left(x+5\right)^{2}
ஈருறுப்பு வர்க்கமாக மீண்டும் எழுதவும்.
x=-5
சமன்பாட்டுத் தீர்வைக் கண்டறிய, x+5=0-ஐத் தீர்க்கவும்.
x^{2}+10x+25=0
\left(x+5\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a+b\right)^{2}=a^{2}+2ab+b^{2} பயன்படுத்தவும்.
a+b=10 ab=1\times 25=25
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை x^{2}+ax+bx+25-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,25 5,5
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 25 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+25=26 5+5=10
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=5 b=5
10 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}+5x\right)+\left(5x+25\right)
x^{2}+10x+25 என்பதை \left(x^{2}+5x\right)+\left(5x+25\right) என மீண்டும் எழுதவும்.
x\left(x+5\right)+5\left(x+5\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 5-ஐக் காரணிப்படுத்தவும்.
\left(x+5\right)\left(x+5\right)
பரவல் பண்பைப் பயன்படுத்தி x+5 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
\left(x+5\right)^{2}
ஈருறுப்பு வர்க்கமாக மீண்டும் எழுதவும்.
x=-5
சமன்பாட்டுத் தீர்வைக் கண்டறிய, x+5=0-ஐத் தீர்க்கவும்.
x^{2}+10x+25=0
\left(x+5\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a+b\right)^{2}=a^{2}+2ab+b^{2} பயன்படுத்தவும்.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக 10 மற்றும் c-க்குப் பதிலாக 25-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
10-ஐ வர்க்கமாக்கவும்.
x=\frac{-10±\sqrt{100-100}}{2}
25-ஐ -4 முறை பெருக்கவும்.
x=\frac{-10±\sqrt{0}}{2}
-100-க்கு 100-ஐக் கூட்டவும்.
x=-\frac{10}{2}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=-5
-10-ஐ 2-ஆல் வகுக்கவும்.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+5=0 x+5=0
எளிமையாக்கவும்.
x=-5 x=-5
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 5-ஐக் கழிக்கவும்.
x=-5
இப்போது சமன்பாடு தீர்க்கப்பட்டது. தீர்வுகள் ஒன்றுதான்.