மதிப்பிடவும்
n^{2}-8
n குறித்து வகையிடவும்
2n
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
n^{2}-\left(2\sqrt{2}\right)^{2}
பின்வரும் விதியைப் பயன்படுத்தி, பெருக்கலை வர்க்கங்களின் வேறுபாடுகளுக்கு மாற்றலாம்: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
n^{2}-2^{2}\left(\sqrt{2}\right)^{2}
\left(2\sqrt{2}\right)^{2}-ஐ விரிக்கவும்.
n^{2}-4\left(\sqrt{2}\right)^{2}
2-இன் அடுக்கு 2-ஐ கணக்கிட்டு, 4-ஐப் பெறவும்.
n^{2}-4\times 2
\sqrt{2}-இன் வர்க்கம் 2 ஆகும்.
n^{2}-8
4 மற்றும் 2-ஐப் பெருக்கவும், தீர்வு 8.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-\left(2\sqrt{2}\right)^{2})
\left(n-2\sqrt{2}\right)\left(n+2\sqrt{2}\right)-ஐக் கருத்தில் கொள்ளவும். பின்வரும் விதியைப் பயன்படுத்தி, பெருக்கலை வர்க்கங்களின் வேறுபாடுகளுக்கு மாற்றலாம்: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-2^{2}\left(\sqrt{2}\right)^{2})
\left(2\sqrt{2}\right)^{2}-ஐ விரிக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-4\left(\sqrt{2}\right)^{2})
2-இன் அடுக்கு 2-ஐ கணக்கிட்டு, 4-ஐப் பெறவும்.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-4\times 2)
\sqrt{2}-இன் வர்க்கம் 2 ஆகும்.
\frac{\mathrm{d}}{\mathrm{d}n}(n^{2}-8)
4 மற்றும் 2-ஐப் பெருக்கவும், தீர்வு 8.
2n^{2-1}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
2n^{1}
2–இலிருந்து 1–ஐக் கழிக்கவும்.
2n
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}