m-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
\left\{\begin{matrix}m=\frac{x+2y+3}{x+y+3}\text{, }&x\neq -\left(y+3\right)\\m\in \mathrm{C}\text{, }&x=-3\text{ and }y=0\end{matrix}\right.
x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
\left\{\begin{matrix}x=-\frac{my-2y+3m-3}{m-1}\text{, }&m\neq 1\\x\in \mathrm{C}\text{, }&y=0\text{ and }m=1\end{matrix}\right.
m-க்காகத் தீர்க்கவும்
\left\{\begin{matrix}m=\frac{x+2y+3}{x+y+3}\text{, }&x\neq -\left(y+3\right)\\m\in \mathrm{R}\text{, }&x=-3\text{ and }y=0\end{matrix}\right.
x-க்காகத் தீர்க்கவும்
\left\{\begin{matrix}x=-\frac{my-2y+3m-3}{m-1}\text{, }&m\neq 1\\x\in \mathrm{R}\text{, }&y=0\text{ and }m=1\end{matrix}\right.
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
mx-x+\left(m-2\right)y+3m-3=0
m-1-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx-x+my-2y+3m-3=0
m-2-ஐ y-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx+my-2y+3m-3=x
இரண்டு பக்கங்களிலும் x-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
mx+my+3m-3=x+2y
இரண்டு பக்கங்களிலும் 2y-ஐச் சேர்க்கவும்.
mx+my+3m=x+2y+3
இரண்டு பக்கங்களிலும் 3-ஐச் சேர்க்கவும்.
\left(x+y+3\right)m=x+2y+3
m உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
\frac{\left(x+y+3\right)m}{x+y+3}=\frac{x+2y+3}{x+y+3}
இரு பக்கங்களையும் x+y+3-ஆல் வகுக்கவும்.
m=\frac{x+2y+3}{x+y+3}
x+y+3-ஆல் வகுத்தல் x+y+3-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
mx-x+\left(m-2\right)y+3m-3=0
m-1-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx-x+my-2y+3m-3=0
m-2-ஐ y-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx-x-2y+3m-3=-my
இரு பக்கங்களில் இருந்தும் my-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
mx-x+3m-3=-my+2y
இரண்டு பக்கங்களிலும் 2y-ஐச் சேர்க்கவும்.
mx-x-3=-my+2y-3m
இரு பக்கங்களில் இருந்தும் 3m-ஐக் கழிக்கவும்.
mx-x=-my+2y-3m+3
இரண்டு பக்கங்களிலும் 3-ஐச் சேர்க்கவும்.
\left(m-1\right)x=-my+2y-3m+3
x உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
\left(m-1\right)x=3-3m+2y-my
சமன்பாடு நிலையான வடிவத்தில் உள்ளது.
\frac{\left(m-1\right)x}{m-1}=\frac{3-3m+2y-my}{m-1}
இரு பக்கங்களையும் m-1-ஆல் வகுக்கவும்.
x=\frac{3-3m+2y-my}{m-1}
m-1-ஆல் வகுத்தல் m-1-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
mx-x+\left(m-2\right)y+3m-3=0
m-1-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx-x+my-2y+3m-3=0
m-2-ஐ y-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx+my-2y+3m-3=x
இரண்டு பக்கங்களிலும் x-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
mx+my+3m-3=x+2y
இரண்டு பக்கங்களிலும் 2y-ஐச் சேர்க்கவும்.
mx+my+3m=x+2y+3
இரண்டு பக்கங்களிலும் 3-ஐச் சேர்க்கவும்.
\left(x+y+3\right)m=x+2y+3
m உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
\frac{\left(x+y+3\right)m}{x+y+3}=\frac{x+2y+3}{x+y+3}
இரு பக்கங்களையும் x+y+3-ஆல் வகுக்கவும்.
m=\frac{x+2y+3}{x+y+3}
x+y+3-ஆல் வகுத்தல் x+y+3-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
mx-x+\left(m-2\right)y+3m-3=0
m-1-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx-x+my-2y+3m-3=0
m-2-ஐ y-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx-x-2y+3m-3=-my
இரு பக்கங்களில் இருந்தும் my-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
mx-x+3m-3=-my+2y
இரண்டு பக்கங்களிலும் 2y-ஐச் சேர்க்கவும்.
mx-x-3=-my+2y-3m
இரு பக்கங்களில் இருந்தும் 3m-ஐக் கழிக்கவும்.
mx-x=-my+2y-3m+3
இரண்டு பக்கங்களிலும் 3-ஐச் சேர்க்கவும்.
\left(m-1\right)x=-my+2y-3m+3
x உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
\left(m-1\right)x=3-3m+2y-my
சமன்பாடு நிலையான வடிவத்தில் உள்ளது.
\frac{\left(m-1\right)x}{m-1}=\frac{3-3m+2y-my}{m-1}
இரு பக்கங்களையும் m-1-ஆல் வகுக்கவும்.
x=\frac{3-3m+2y-my}{m-1}
m-1-ஆல் வகுத்தல் m-1-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}