பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
m-க்காகத் தீர்க்கவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

m^{2}-m-6=-4
m+2-ஐ m-3-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
m^{2}-m-6+4=0
இரண்டு பக்கங்களிலும் 4-ஐச் சேர்க்கவும்.
m^{2}-m-2=0
-6 மற்றும் 4-ஐக் கூட்டவும், தீர்வு -2.
m=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -1 மற்றும் c-க்குப் பதிலாக -2-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
m=\frac{-\left(-1\right)±\sqrt{1+8}}{2}
-2-ஐ -4 முறை பெருக்கவும்.
m=\frac{-\left(-1\right)±\sqrt{9}}{2}
8-க்கு 1-ஐக் கூட்டவும்.
m=\frac{-\left(-1\right)±3}{2}
9-இன் வர்க்க மூலத்தை எடுக்கவும்.
m=\frac{1±3}{2}
-1-க்கு எதிரில் இருப்பது 1.
m=\frac{4}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு m=\frac{1±3}{2}-ஐத் தீர்க்கவும். 3-க்கு 1-ஐக் கூட்டவும்.
m=2
4-ஐ 2-ஆல் வகுக்கவும்.
m=-\frac{2}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு m=\frac{1±3}{2}-ஐத் தீர்க்கவும். 1–இலிருந்து 3–ஐக் கழிக்கவும்.
m=-1
-2-ஐ 2-ஆல் வகுக்கவும்.
m=2 m=-1
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
m^{2}-m-6=-4
m+2-ஐ m-3-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
m^{2}-m=-4+6
இரண்டு பக்கங்களிலும் 6-ஐச் சேர்க்கவும்.
m^{2}-m=2
-4 மற்றும் 6-ஐக் கூட்டவும், தீர்வு 2.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2}-ஐப் பெற, x உறுப்பின் ஈவான -1-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{1}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
m^{2}-m+\frac{1}{4}=2+\frac{1}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{1}{2}-ஐ வர்க்கமாக்கவும்.
m^{2}-m+\frac{1}{4}=\frac{9}{4}
\frac{1}{4}-க்கு 2-ஐக் கூட்டவும்.
\left(m-\frac{1}{2}\right)^{2}=\frac{9}{4}
காரணி m^{2}-m+\frac{1}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
m-\frac{1}{2}=\frac{3}{2} m-\frac{1}{2}=-\frac{3}{2}
எளிமையாக்கவும்.
m=2 m=-1
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{1}{2}-ஐக் கூட்டவும்.