மதிப்பிடவும்
a
a குறித்து வகையிடவும்
1
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{a+b}{a+b}-ஐ a-b முறை பெருக்கவும்.
\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a}
\frac{\left(a-b\right)\left(a+b\right)}{a+b} மற்றும் \frac{b^{2}}{a+b} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a}
\left(a-b\right)\left(a+b\right)+b^{2} இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{a^{2}}{a+b}\times \frac{a+b}{a}
a^{2}+ab-ba-b^{2}+b^{2}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{a+b}{a}-ஐ \frac{a^{2}}{a+b} முறை பெருக்கவும்.
a
பகுதி மற்றும் தொகுதி இரண்டிலும் a\left(a+b\right)-ஐ ரத்துசெய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{b^{2}}{a+b}\right)\times \frac{a+b}{a})
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{a+b}{a+b}-ஐ a-b முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-b\right)\left(a+b\right)+b^{2}}{a+b}\times \frac{a+b}{a})
\frac{\left(a-b\right)\left(a+b\right)}{a+b} மற்றும் \frac{b^{2}}{a+b} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}+ab-ba-b^{2}+b^{2}}{a+b}\times \frac{a+b}{a})
\left(a-b\right)\left(a+b\right)+b^{2} இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}}{a+b}\times \frac{a+b}{a})
a^{2}+ab-ba-b^{2}+b^{2}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}\left(a+b\right)}{\left(a+b\right)a})
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{a+b}{a}-ஐ \frac{a^{2}}{a+b} முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
பகுதி மற்றும் தொகுதி இரண்டிலும் a\left(a+b\right)-ஐ ரத்துசெய்யவும்.
a^{1-1}
nax^{n-1} என்பது ax^{n}-இன் வகையிடல் ஆகும்.
a^{0}
1–இலிருந்து 1–ஐக் கழிக்கவும்.
1
0, t^{0}=1 தவிர்த்து, எந்தவொரு சொல்லுக்கும் t.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}