பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3\left(2x^{2}-7x-4\right)
3-ஐக் காரணிப்படுத்தவும்.
a+b=-7 ab=2\left(-4\right)=-8
2x^{2}-7x-4-ஐக் கருத்தில் கொள்ளவும். குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை 2x^{2}+ax+bx-4-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-8 2,-4
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -8 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-8=-7 2-4=-2
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-8 b=1
-7 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(2x^{2}-8x\right)+\left(x-4\right)
2x^{2}-7x-4 என்பதை \left(2x^{2}-8x\right)+\left(x-4\right) என மீண்டும் எழுதவும்.
2x\left(x-4\right)+x-4
2x^{2}-8x-இல் 2x ஐக் காரணிப்படுத்தவும்.
\left(x-4\right)\left(2x+1\right)
பரவல் பண்பைப் பயன்படுத்தி x-4 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
3\left(x-4\right)\left(2x+1\right)
முழுமையான பின்னக் கோவையை மீண்டும் எழுதவும்.
6x^{2}-21x-12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 6\left(-12\right)}}{2\times 6}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 6\left(-12\right)}}{2\times 6}
-21-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-21\right)±\sqrt{441-24\left(-12\right)}}{2\times 6}
6-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-21\right)±\sqrt{441+288}}{2\times 6}
-12-ஐ -24 முறை பெருக்கவும்.
x=\frac{-\left(-21\right)±\sqrt{729}}{2\times 6}
288-க்கு 441-ஐக் கூட்டவும்.
x=\frac{-\left(-21\right)±27}{2\times 6}
729-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{21±27}{2\times 6}
-21-க்கு எதிரில் இருப்பது 21.
x=\frac{21±27}{12}
6-ஐ 2 முறை பெருக்கவும்.
x=\frac{48}{12}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{21±27}{12}-ஐத் தீர்க்கவும். 27-க்கு 21-ஐக் கூட்டவும்.
x=4
48-ஐ 12-ஆல் வகுக்கவும்.
x=-\frac{6}{12}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{21±27}{12}-ஐத் தீர்க்கவும். 21–இலிருந்து 27–ஐக் கழிக்கவும்.
x=-\frac{1}{2}
6-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-6}{12}-ஐ குறைந்த படிக்கு குறைக்கவும்.
6x^{2}-21x-12=6\left(x-4\right)\left(x-\left(-\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 4-ஐயும், x_{2}-க்கு -\frac{1}{2}-ஐயும் பதிலீடு செய்யவும்.
6x^{2}-21x-12=6\left(x-4\right)\left(x+\frac{1}{2}\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.
6x^{2}-21x-12=6\left(x-4\right)\times \frac{2x+1}{2}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், x உடன் \frac{1}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
6x^{2}-21x-12=3\left(x-4\right)\left(2x+1\right)
6 மற்றும் 2-இல் சிறந்த பொதுக் காரணி 2-ஐ ரத்துசெய்கிறது.