பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

3x^{2}+x-10\leq x^{2}
3x-5-ஐ x+2-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
3x^{2}+x-10-x^{2}\leq 0
இரு பக்கங்களில் இருந்தும் x^{2}-ஐக் கழிக்கவும்.
2x^{2}+x-10\leq 0
3x^{2} மற்றும் -x^{2}-ஐ இணைத்தால், தீர்வு 2x^{2}.
2x^{2}+x-10=0
சமமற்ற நிலையைத் தீர்க்க, இடது கை பக்கத்தைக் காரணிப்படுத்தவும். ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-10\right)}}{2\times 2}
ax^{2}+bx+c=0 வடிவத்தில் உள்ள எல்லாச் சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தி தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரத்தில் a-க்குப் பதிலாக 2, b-க்குப் பதிலாக 1 மற்றும் c-க்கு பதிலாக -10-ஐ பதிலீடு செய்யவும்.
x=\frac{-1±9}{4}
கணக்கீடுகளைச் செய்யவும்.
x=2 x=-\frac{5}{2}
± நேர் எண்ணிலும் ± எதிர் எண்ணிலும் உள்ளபோது, சமன்பாடு x=\frac{-1±9}{4}-ஐச் சரிசெய்யவும்.
2\left(x-2\right)\left(x+\frac{5}{2}\right)\leq 0
பெறப்பட்ட தீர்வுகளைப் பயன்படுத்தி சமமற்றதை மீண்டும் எழுதவும்.
x-2\geq 0 x+\frac{5}{2}\leq 0
பெருக்கல் ≤0 ஆக இருக்க, x-2 மற்றும் x+\frac{5}{2} மதிப்புகளில் ஒன்று ≥0 ஆகவும், மற்றொன்று ≤0 ஆகவும் இருக்க வேண்டும். x-2\geq 0 மற்றும் x+\frac{5}{2}\leq 0 என இரண்டும் உள்ளபோது இந்த வழக்கைக் கவனத்தில் கொள்ளவும்.
x\in \emptyset
எந்தவொரு x-க்கும் இது தவறு.
x+\frac{5}{2}\geq 0 x-2\leq 0
x-2\leq 0 மற்றும் x+\frac{5}{2}\geq 0 என இரண்டும் உள்ளபோது இந்த வழக்கைக் கவனத்தில் கொள்ளவும்.
x\in \begin{bmatrix}-\frac{5}{2},2\end{bmatrix}
இரண்டு சமமற்றவற்றையும் தீர்க்கும் தீர்வு x\in \left[-\frac{5}{2},2\right] ஆகும்.
x\in \begin{bmatrix}-\frac{5}{2},2\end{bmatrix}
இறுதித் தீர்வு என்பது பெறப்பட்ட தீர்வுகளின் இணைப்பு ஆகும்.