பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -3,-1 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரண்டு பக்கங்களிலும் x+3,4\left(x^{2}+4x+3\right)-இன் சிறிய பொது பெருக்கியான 4\left(x+1\right)\left(x+3\right)-ஆல் பெருக்கவும்.
\left(x^{2}+4x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x+1-ஐ x+3-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
x^{2}+4x+3-ஐ x-2-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
காரணி x^{2}-x-2.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-ஐ 3 முறை பெருக்கவும்.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} மற்றும் \frac{7x-5}{\left(x-2\right)\left(x+1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+3x-6x-6+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3\left(x-2\right)\left(x+1\right)+7x-5 இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+3x-6x-6+7x-5-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \left(x-2\right)\left(x+1\right) மற்றும் x+1-க்கு இடையிலான மீச்சிறு பெருக்கி \left(x-2\right)\left(x+1\right) ஆகும். \frac{x-2}{x-2}-ஐ \frac{3x}{x+1} முறை பெருக்கவும்.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)} மற்றும் \frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x^{2}+6x}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x\left(x-2\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
3x^{2}+4x-11-3x^{2}+6x-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)}-ஐ ஒற்றை பின்னமாகக் காட்டவும்.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+20x+20=9x^{2}+43x+8
4x+4-ஐ 5-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-ஐ 20x+20 முறை பெருக்கவும்.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)} மற்றும் \frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}=9x^{2}+43x+8
x-2-ஐ x+1-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}-9x^{2}=43x+8
இரு பக்கங்களில் இருந்தும் 9x^{2}-ஐக் கழிக்கவும்.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-9x^{2}=43x+8
காரணி x^{2}-x-2.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-ஐ -9x^{2} முறை பெருக்கவும்.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} மற்றும் \frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=43x+8
10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
இரு பக்கங்களில் இருந்தும் 43x-ஐக் கழிக்கவும்.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{x^{2}-x-2}-43x=8
x-2-ஐ x+1-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
காரணி x^{2}-x-2.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-ஐ -43x முறை பெருக்கவும்.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} மற்றும் \frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}=8
x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும்.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{x^{2}-x-2}-8=0
x-2-ஐ x+1-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
காரணி x^{2}-x-2.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-\frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-ஐ 8 முறை பெருக்கவும்.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)} மற்றும் \frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right) இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{x^{4}-5x^{3}-19x^{2}+29x+42}{\left(x-2\right)\left(x+1\right)}=0
x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
x^{4}-5x^{3}-19x^{2}+29x+42=0
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது எந்தவொரு -1,2 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் \left(x-2\right)\left(x+1\right)-ஆல் பெருக்கவும்.
±42,±21,±14,±7,±6,±3,±2,±1
பிரிப்பு வர்க்கத் தேற்றத்தின்படி, அடுக்குக்கோவையின் எல்லா பிரிப்பு வர்க்கங்களும் \frac{p}{q} வடிவத்தில் இருக்கும், அதில் p ஆனது நிலையான 42-ஐ வகுக்கிறது மற்றும் q ஆனது மதிப்பில் பெரிய கெழுவான 1-ஐ வகுக்கிறது. அனைத்து விண்ணப்பதாரர்களின் பட்டியல் \frac{p}{q}.
x=-1
முழுமையான மிகச்சிறிய மதிப்பிலிருந்து தொடங்கி, முழு எண் மதிப்புகளை முயல்வதன் மூலம் அத்தகைய ஒரு வர்க்கத்தைக் கண்டறியவும். முழு எண் வர்க்கங்கள் கண்டறியப்படவில்லை என்றால், பின்னங்களை முயலவும்.
x^{3}-6x^{2}-13x+42=0
காரணி தேற்றத்தின்படி, ஒவ்வொரு வர்க்க k-க்கும் x-k-ஆனது அடுக்குக் கோவையின் காரணியாகும். x^{3}-6x^{2}-13x+42-ஐப் பெற, x+1-ஐ x^{4}-5x^{3}-19x^{2}+29x+42-ஆல் வகுக்கவும். முடிவுகள் 0-க்குச் சமமாக உள்ளபோது சமன்பாட்டைத் தீர்க்கவும்.
±42,±21,±14,±7,±6,±3,±2,±1
பிரிப்பு வர்க்கத் தேற்றத்தின்படி, அடுக்குக்கோவையின் எல்லா பிரிப்பு வர்க்கங்களும் \frac{p}{q} வடிவத்தில் இருக்கும், அதில் p ஆனது நிலையான 42-ஐ வகுக்கிறது மற்றும் q ஆனது மதிப்பில் பெரிய கெழுவான 1-ஐ வகுக்கிறது. அனைத்து விண்ணப்பதாரர்களின் பட்டியல் \frac{p}{q}.
x=2
முழுமையான மிகச்சிறிய மதிப்பிலிருந்து தொடங்கி, முழு எண் மதிப்புகளை முயல்வதன் மூலம் அத்தகைய ஒரு வர்க்கத்தைக் கண்டறியவும். முழு எண் வர்க்கங்கள் கண்டறியப்படவில்லை என்றால், பின்னங்களை முயலவும்.
x^{2}-4x-21=0
காரணி தேற்றத்தின்படி, ஒவ்வொரு வர்க்க k-க்கும் x-k-ஆனது அடுக்குக் கோவையின் காரணியாகும். x^{2}-4x-21-ஐப் பெற, x-2-ஐ x^{3}-6x^{2}-13x+42-ஆல் வகுக்கவும். முடிவுகள் 0-க்குச் சமமாக உள்ளபோது சமன்பாட்டைத் தீர்க்கவும்.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
ax^{2}+bx+c=0 வடிவத்தில் உள்ள எல்லாச் சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தி தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரத்தில் a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -4 மற்றும் c-க்கு பதிலாக -21-ஐ பதிலீடு செய்யவும்.
x=\frac{4±10}{2}
கணக்கீடுகளைச் செய்யவும்.
x=-3 x=7
± நேர் எண்ணிலும் ± எதிர் எண்ணிலும் உள்ளபோது, சமன்பாடு x^{2}-4x-21=0-ஐச் சரிசெய்யவும்.
x=7
மாறி சமமாக இருக்காத மதிப்புகளை அகற்றவும்.
x=-1 x=2 x=-3 x=7
காணப்படும் தீர்வுகள் அனைத்தையும் பட்டியலிடவும்.
x=7
மாறி x ஆனது எந்தவொரு -1,2,-3 மதிப்புகளுக்கும் சமமாக இருக்க முடியாது.