x-க்காகத் தீர்க்கவும்
x = \frac{\sqrt{1085}}{15} \approx 2.195955879
x = -\frac{\sqrt{1085}}{15} \approx -2.195955879
x=1
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(3x-2\right)^{2}-40x^{2}=-205
\left(2x+4\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a+b\right)^{2}=a^{2}+2ab+b^{2} பயன்படுத்தவும்.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-\left(9x^{2}-12x+4\right)-40x^{2}=-205
\left(3x-2\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-9x^{2}+12x-4-40x^{2}=-205
9x^{2}-12x+4-இன் எதிர்ச்சொல்லைக் கண்டறிய, ஒவ்வொரு வார்த்தையின் எதிர்ச்சொல்லையும் கண்டறியவும்.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4=-205
-9x^{2} மற்றும் -40x^{2}-ஐ இணைத்தால், தீர்வு -49x^{2}.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x-4+205=0
இரண்டு பக்கங்களிலும் 205-ஐச் சேர்க்கவும்.
4x^{2}+16x+16-5x\left(7-3x\right)\left(7+3x\right)-49x^{2}+12x+201=0
-4 மற்றும் 205-ஐக் கூட்டவும், தீர்வு 201.
4x^{2}+16x+16+\left(-35x+15x^{2}\right)\left(7+3x\right)-49x^{2}+12x+201=0
-5x-ஐ 7-3x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}+16x+16-245x+45x^{3}-49x^{2}+12x+201=0
-35x+15x^{2}-ஐ 7+3x-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
4x^{2}-229x+16+45x^{3}-49x^{2}+12x+201=0
16x மற்றும் -245x-ஐ இணைத்தால், தீர்வு -229x.
-45x^{2}-229x+16+45x^{3}+12x+201=0
4x^{2} மற்றும் -49x^{2}-ஐ இணைத்தால், தீர்வு -45x^{2}.
-45x^{2}-217x+16+45x^{3}+201=0
-229x மற்றும் 12x-ஐ இணைத்தால், தீர்வு -217x.
-45x^{2}-217x+217+45x^{3}=0
16 மற்றும் 201-ஐக் கூட்டவும், தீர்வு 217.
45x^{3}-45x^{2}-217x+217=0
சமன்பாட்டைத் தரநிலையான வடிவத்தில் இடுவதற்கு அதை மீண்டும் ஒழுங்குபடுத்தவும். உறுப்புகளை மிகஅதிக அடுக்கு முதல் மிகக்குறைந்த அடுக்கு என்ற வரிசையில் இடவும்.
±\frac{217}{45},±\frac{217}{15},±\frac{217}{9},±\frac{217}{5},±\frac{217}{3},±217,±\frac{31}{45},±\frac{31}{15},±\frac{31}{9},±\frac{31}{5},±\frac{31}{3},±31,±\frac{7}{45},±\frac{7}{15},±\frac{7}{9},±\frac{7}{5},±\frac{7}{3},±7,±\frac{1}{45},±\frac{1}{15},±\frac{1}{9},±\frac{1}{5},±\frac{1}{3},±1
பிரிப்பு வர்க்கத் தேற்றத்தின்படி, அடுக்குக்கோவையின் எல்லா பிரிப்பு வர்க்கங்களும் \frac{p}{q} வடிவத்தில் இருக்கும், அதில் p ஆனது நிலையான 217-ஐ வகுக்கிறது மற்றும் q ஆனது மதிப்பில் பெரிய கெழுவான 45-ஐ வகுக்கிறது. அனைத்து விண்ணப்பதாரர்களின் பட்டியல் \frac{p}{q}.
x=1
முழுமையான மிகச்சிறிய மதிப்பிலிருந்து தொடங்கி, முழு எண் மதிப்புகளை முயல்வதன் மூலம் அத்தகைய ஒரு வர்க்கத்தைக் கண்டறியவும். முழு எண் வர்க்கங்கள் கண்டறியப்படவில்லை என்றால், பின்னங்களை முயலவும்.
45x^{2}-217=0
காரணி தேற்றத்தின்படி, ஒவ்வொரு வர்க்க k-க்கும் x-k-ஆனது அடுக்குக் கோவையின் காரணியாகும். 45x^{2}-217-ஐப் பெற, x-1-ஐ 45x^{3}-45x^{2}-217x+217-ஆல் வகுக்கவும். முடிவுகள் 0-க்குச் சமமாக உள்ளபோது சமன்பாட்டைத் தீர்க்கவும்.
x=\frac{0±\sqrt{0^{2}-4\times 45\left(-217\right)}}{2\times 45}
ax^{2}+bx+c=0 வடிவத்தில் உள்ள எல்லாச் சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தி தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரத்தில் a-க்குப் பதிலாக 45, b-க்குப் பதிலாக 0 மற்றும் c-க்கு பதிலாக -217-ஐ பதிலீடு செய்யவும்.
x=\frac{0±6\sqrt{1085}}{90}
கணக்கீடுகளைச் செய்யவும்.
x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
± நேர் எண்ணிலும் ± எதிர் எண்ணிலும் உள்ளபோது, சமன்பாடு 45x^{2}-217=0-ஐச் சரிசெய்யவும்.
x=1 x=-\frac{\sqrt{1085}}{15} x=\frac{\sqrt{1085}}{15}
காணப்படும் தீர்வுகள் அனைத்தையும் பட்டியலிடவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}