பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

-x^{2}-x+12
பல்லுறுப்புக் கோவையை வழக்கமான வடிவத்தில் இடுவதற்கு அதை மீண்டும் ஒழுங்குபடுத்தவும். உறுப்புகளை மிகஅதிக முதல் மிகக்குறைந்த அடுக்கு என்ற வரிசையில் இடவும்.
a+b=-1 ab=-12=-12
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை -x^{2}+ax+bx+12-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-12 2,-6 3,-4
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -12 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-12=-11 2-6=-4 3-4=-1
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=3 b=-4
-1 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(-x^{2}+3x\right)+\left(-4x+12\right)
-x^{2}-x+12 என்பதை \left(-x^{2}+3x\right)+\left(-4x+12\right) என மீண்டும் எழுதவும்.
x\left(-x+3\right)+4\left(-x+3\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 4-ஐக் காரணிப்படுத்தவும்.
\left(-x+3\right)\left(x+4\right)
பரவல் பண்பைப் பயன்படுத்தி -x+3 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
-x^{2}-x+12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 12}}{2\left(-1\right)}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 12}}{2\left(-1\right)}
-1-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\left(-1\right)}
12-ஐ 4 முறை பெருக்கவும்.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\left(-1\right)}
48-க்கு 1-ஐக் கூட்டவும்.
x=\frac{-\left(-1\right)±7}{2\left(-1\right)}
49-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{1±7}{2\left(-1\right)}
-1-க்கு எதிரில் இருப்பது 1.
x=\frac{1±7}{-2}
-1-ஐ 2 முறை பெருக்கவும்.
x=\frac{8}{-2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{1±7}{-2}-ஐத் தீர்க்கவும். 7-க்கு 1-ஐக் கூட்டவும்.
x=-4
8-ஐ -2-ஆல் வகுக்கவும்.
x=-\frac{6}{-2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{1±7}{-2}-ஐத் தீர்க்கவும். 1–இலிருந்து 7–ஐக் கழிக்கவும்.
x=3
-6-ஐ -2-ஆல் வகுக்கவும்.
-x^{2}-x+12=-\left(x-\left(-4\right)\right)\left(x-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு -4-ஐயும், x_{2}-க்கு 3-ஐயும் பதிலீடு செய்யவும்.
-x^{2}-x+12=-\left(x+4\right)\left(x-3\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.