பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

20000+100x-x^{2}=20000
100+x-ஐ 200-x-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
20000+100x-x^{2}-20000=0
இரு பக்கங்களில் இருந்தும் 20000-ஐக் கழிக்கவும்.
100x-x^{2}=0
20000-இலிருந்து 20000-ஐக் கழிக்கவும், தீர்வு 0.
-x^{2}+100x=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-100±\sqrt{100^{2}}}{2\left(-1\right)}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக -1, b-க்குப் பதிலாக 100 மற்றும் c-க்குப் பதிலாக 0-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-100±100}{2\left(-1\right)}
100^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-100±100}{-2}
-1-ஐ 2 முறை பெருக்கவும்.
x=\frac{0}{-2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-100±100}{-2}-ஐத் தீர்க்கவும். 100-க்கு -100-ஐக் கூட்டவும்.
x=0
0-ஐ -2-ஆல் வகுக்கவும்.
x=-\frac{200}{-2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-100±100}{-2}-ஐத் தீர்க்கவும். -100–இலிருந்து 100–ஐக் கழிக்கவும்.
x=100
-200-ஐ -2-ஆல் வகுக்கவும்.
x=0 x=100
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
20000+100x-x^{2}=20000
100+x-ஐ 200-x-ஆல் பெருக்கவும் அதைப் போன்றவற்றை இணைக்கவும், பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
100x-x^{2}=20000-20000
இரு பக்கங்களில் இருந்தும் 20000-ஐக் கழிக்கவும்.
100x-x^{2}=0
20000-இலிருந்து 20000-ஐக் கழிக்கவும், தீர்வு 0.
-x^{2}+100x=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
\frac{-x^{2}+100x}{-1}=\frac{0}{-1}
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
x^{2}+\frac{100}{-1}x=\frac{0}{-1}
-1-ஆல் வகுத்தல் -1-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}-100x=\frac{0}{-1}
100-ஐ -1-ஆல் வகுக்கவும்.
x^{2}-100x=0
0-ஐ -1-ஆல் வகுக்கவும்.
x^{2}-100x+\left(-50\right)^{2}=\left(-50\right)^{2}
-50-ஐப் பெற, x உறுப்பின் ஈவான -100-ஐ 2-ஆல் வகுக்கவும். பிறகு -50-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-100x+2500=2500
-50-ஐ வர்க்கமாக்கவும்.
\left(x-50\right)^{2}=2500
காரணி x^{2}-100x+2500. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-50\right)^{2}}=\sqrt{2500}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-50=50 x-50=-50
எளிமையாக்கவும்.
x=100 x=0
சமன்பாட்டின் இரு பக்கங்களிலும் 50-ஐக் கூட்டவும்.