n-க்காகத் தீர்க்கவும்
n=10
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
2^{n-1}=\frac{-1536}{-3}
இரு பக்கங்களையும் -3-ஆல் வகுக்கவும்.
2^{n-1}=512
512-ஐப் பெற, -3-ஐ -1536-ஆல் வகுக்கவும்.
\log(2^{n-1})=\log(512)
சமன்பாட்டின் இரு பக்கங்களின் மடக்கையை எடுக்கவும்.
\left(n-1\right)\log(2)=\log(512)
அடுக்கிற்கு உயர்த்தப்பட்ட எண்ணின் மடக்கை என்பது அந்த எண்ணின் மடக்கையின் அடுக்கு மடங்கு.
n-1=\frac{\log(512)}{\log(2)}
இரு பக்கங்களையும் \log(2)-ஆல் வகுக்கவும்.
n-1=\log_{2}\left(512\right)
\frac{\log(a)}{\log(b)}=\log_{b}\left(a\right) அடிப்படைச் சூத்திரத்தை மாற்றுவதன் மூலம்.
n=9-\left(-1\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 1-ஐக் கூட்டவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}