பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
மதிப்பிடவும்
Tick mark Image
x குறித்து வகையிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\frac{2\left(x-5\right)}{x\left(x-5\right)}+\frac{3x}{x\left(x-5\right)}
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். x மற்றும் x-5-க்கு இடையிலான மீச்சிறு பெருக்கி x\left(x-5\right) ஆகும். \frac{x-5}{x-5}-ஐ \frac{2}{x} முறை பெருக்கவும். \frac{x}{x}-ஐ \frac{3}{x-5} முறை பெருக்கவும்.
\frac{2\left(x-5\right)+3x}{x\left(x-5\right)}
\frac{2\left(x-5\right)}{x\left(x-5\right)} மற்றும் \frac{3x}{x\left(x-5\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{2x-10+3x}{x\left(x-5\right)}
2\left(x-5\right)+3x இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{5x-10}{x\left(x-5\right)}
2x-10+3x-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{5x-10}{x^{2}-5x}
x\left(x-5\right)-ஐ விரிக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-5\right)}{x\left(x-5\right)}+\frac{3x}{x\left(x-5\right)})
கோவைகளைக் கூட்ட அல்லது கழிக்க, அவற்றின் தொகுதிகளை சமமாக மாற்ற அவற்றை விரிக்கவும். x மற்றும் x-5-க்கு இடையிலான மீச்சிறு பெருக்கி x\left(x-5\right) ஆகும். \frac{x-5}{x-5}-ஐ \frac{2}{x} முறை பெருக்கவும். \frac{x}{x}-ஐ \frac{3}{x-5} முறை பெருக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-5\right)+3x}{x\left(x-5\right)})
\frac{2\left(x-5\right)}{x\left(x-5\right)} மற்றும் \frac{3x}{x\left(x-5\right)} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-10+3x}{x\left(x-5\right)})
2\left(x-5\right)+3x இல் பெருக்கல் செயல்பாட்டைச் செய்யவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-10}{x\left(x-5\right)})
2x-10+3x-இல் உள்ள ஒத்த சொற்களை இணைக்கவும்.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-10}{x^{2}-5x})
x-ஐ x-5-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
\frac{\left(x^{2}-5x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}-10)-\left(5x^{1}-10\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-5x^{1})}{\left(x^{2}-5x^{1}\right)^{2}}
ஏதேனும் இரண்டு வகையிடக்கூடிய சார்புகளுக்கு, இரண்டு சார்புகளின் ஈவின் வகைக்கெழு என்பது தொகுதியின் வகைக்கெழுவை பகுதியால் பெருக்க வரும் மதிப்பிலிருந்து பகுதியின் வகைக்கெழுவை தொகுதியால் பெருக்க வரும் மதிப்பைக் கழித்து, எல்லாமே பகுதியின் வர்க்கத்தால் வகுக்கப்படும்.
\frac{\left(x^{2}-5x^{1}\right)\times 5x^{1-1}-\left(5x^{1}-10\right)\left(2x^{2-1}-5x^{1-1}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
\frac{\left(x^{2}-5x^{1}\right)\times 5x^{0}-\left(5x^{1}-10\right)\left(2x^{1}-5x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
எளிமையாக்கவும்.
\frac{x^{2}\times 5x^{0}-5x^{1}\times 5x^{0}-\left(5x^{1}-10\right)\left(2x^{1}-5x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
5x^{0}-ஐ x^{2}-5x^{1} முறை பெருக்கவும்.
\frac{x^{2}\times 5x^{0}-5x^{1}\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\left(-5\right)x^{0}-10\times 2x^{1}-10\left(-5\right)x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
2x^{1}-5x^{0}-ஐ 5x^{1}-10 முறை பெருக்கவும்.
\frac{5x^{2}-5\times 5x^{1}-\left(5\times 2x^{1+1}+5\left(-5\right)x^{1}-10\times 2x^{1}-10\left(-5\right)x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
ஒரே அடியின் அடுக்குகளைப் பெருக்க, அவற்றின் அடுக்குகளைக் கூட்டவும்.
\frac{5x^{2}-25x^{1}-\left(10x^{2}-25x^{1}-20x^{1}+50x^{0}\right)}{\left(x^{2}-5x^{1}\right)^{2}}
எளிமையாக்கவும்.
\frac{-5x^{2}+20x^{1}-50x^{0}}{\left(x^{2}-5x^{1}\right)^{2}}
ஒரேமாதிரியான உறுப்புகளை இணைக்கவும்.
\frac{-5x^{2}+20x-50x^{0}}{\left(x^{2}-5x\right)^{2}}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.
\frac{-5x^{2}+20x-50}{\left(x^{2}-5x\right)^{2}}
0, t^{0}=1 தவிர்த்து, எந்தவொரு சொல்லுக்கும் t.