மதிப்பிடவும்
\frac{1}{2}=0.5
காரணி
\frac{1}{2} = 0.5
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\frac{18}{15}-\frac{20}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
5 மற்றும் 3-க்கு இடையிலான குறைந்தபட்ச பெருக்கல் எண் 15 ஆகும். \frac{6}{5} மற்றும் \frac{4}{3} ஆகியவற்றை 15 என்ற வகுத்தியால் பின்னமாக்கவும்.
\frac{18-20}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
\frac{18}{15} மற்றும் \frac{20}{15} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
-\frac{2}{15}-\left(-\frac{5}{2}+\frac{7}{3}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
18-இலிருந்து 20-ஐக் கழிக்கவும், தீர்வு -2.
-\frac{2}{15}-\left(-\frac{15}{6}+\frac{14}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
2 மற்றும் 3-க்கு இடையிலான குறைந்தபட்ச பெருக்கல் எண் 6 ஆகும். -\frac{5}{2} மற்றும் \frac{7}{3} ஆகியவற்றை 6 என்ற வகுத்தியால் பின்னமாக்கவும்.
-\frac{2}{15}-\left(\frac{-15+14}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-\frac{15}{6} மற்றும் \frac{14}{6} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
-\frac{2}{15}-\left(-\frac{1}{6}-\frac{1}{6}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-15 மற்றும் 14-ஐக் கூட்டவும், தீர்வு -1.
-\frac{2}{15}-\frac{-1-1}{6}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-\frac{1}{6} மற்றும் \frac{1}{6} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
-\frac{2}{15}-\frac{-2}{6}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-1-இலிருந்து 1-ஐக் கழிக்கவும், தீர்வு -2.
-\frac{2}{15}-\left(-\frac{1}{3}\right)-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
2-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-2}{6}-ஐ குறைந்த படிக்கு குறைக்கவும்.
-\frac{2}{15}+\frac{1}{3}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-\frac{1}{3}-க்கு எதிரில் இருப்பது \frac{1}{3}.
-\frac{2}{15}+\frac{5}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
15 மற்றும் 3-க்கு இடையிலான குறைந்தபட்ச பெருக்கல் எண் 15 ஆகும். -\frac{2}{15} மற்றும் \frac{1}{3} ஆகியவற்றை 15 என்ற வகுத்தியால் பின்னமாக்கவும்.
\frac{-2+5}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-\frac{2}{15} மற்றும் \frac{5}{15} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{3}{15}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
-2 மற்றும் 5-ஐக் கூட்டவும், தீர்வு 3.
\frac{1}{5}-\frac{4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
3-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{3}{15}-ஐ குறைந்த படிக்கு குறைக்கவும்.
\frac{1-4}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
\frac{1}{5} மற்றும் \frac{4}{5} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கழிப்பதன் மூலம் அவற்றின் வித்தியாசத்தைக் காணவும்.
-\frac{3}{5}+\frac{3}{4}-\left(-\frac{7}{20}\right)
1-இலிருந்து 4-ஐக் கழிக்கவும், தீர்வு -3.
-\frac{12}{20}+\frac{15}{20}-\left(-\frac{7}{20}\right)
5 மற்றும் 4-க்கு இடையிலான குறைந்தபட்ச பெருக்கல் எண் 20 ஆகும். -\frac{3}{5} மற்றும் \frac{3}{4} ஆகியவற்றை 20 என்ற வகுத்தியால் பின்னமாக்கவும்.
\frac{-12+15}{20}-\left(-\frac{7}{20}\right)
-\frac{12}{20} மற்றும் \frac{15}{20} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{3}{20}-\left(-\frac{7}{20}\right)
-12 மற்றும் 15-ஐக் கூட்டவும், தீர்வு 3.
\frac{3}{20}+\frac{7}{20}
-\frac{7}{20}-க்கு எதிரில் இருப்பது \frac{7}{20}.
\frac{3+7}{20}
\frac{3}{20} மற்றும் \frac{7}{20} ஆகியவை ஒரே பகுதியைக் கொண்டுள்ளதால், அவற்றின் தொகுதியைக் கூட்டுவதன் மூலம் அவற்றைக் கூட்டவும்.
\frac{10}{20}
3 மற்றும் 7-ஐக் கூட்டவும், தீர்வு 10.
\frac{1}{2}
10-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{10}{20}-ஐ குறைந்த படிக்கு குறைக்கவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}