x-க்காகத் தீர்க்கவும்
x=2
x=7
விளக்கப்படம்
வினாடி வினா
Quadratic Equation
{ x }^{ 2 } -9x=-14
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
x^{2}-9x+14=0
இரண்டு பக்கங்களிலும் 14-ஐச் சேர்க்கவும்.
a+b=-9 ab=14
சமன்பாட்டைத் தீர்க்க, x^{2}-9x+14 காரணியானது x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) சூத்திரத்தைப் பயன்படுத்துகிறது. a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,-14 -2,-7
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். 14 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1-14=-15 -2-7=-9
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-7 b=-2
-9 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x-7\right)\left(x-2\right)
பெறப்பட்ட மதிப்புகளைப் பயன்படுத்தி பின்னக் கோவை \left(x+a\right)\left(x+b\right)-ஐ மீண்டும் எழுதவும்.
x=7 x=2
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-7=0 மற்றும் x-2=0-ஐத் தீர்க்கவும்.
x^{2}-9x+14=0
இரண்டு பக்கங்களிலும் 14-ஐச் சேர்க்கவும்.
a+b=-9 ab=1\times 14=14
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை x^{2}+ax+bx+14-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,-14 -2,-7
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். 14 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1-14=-15 -2-7=-9
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-7 b=-2
-9 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}-7x\right)+\left(-2x+14\right)
x^{2}-9x+14 என்பதை \left(x^{2}-7x\right)+\left(-2x+14\right) என மீண்டும் எழுதவும்.
x\left(x-7\right)-2\left(x-7\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் -2-ஐக் காரணிப்படுத்தவும்.
\left(x-7\right)\left(x-2\right)
பரவல் பண்பைப் பயன்படுத்தி x-7 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=7 x=2
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-7=0 மற்றும் x-2=0-ஐத் தீர்க்கவும்.
x^{2}-9x=-14
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x^{2}-9x-\left(-14\right)=-14-\left(-14\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 14-ஐக் கூட்டவும்.
x^{2}-9x-\left(-14\right)=0
-14-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x^{2}-9x+14=0
0–இலிருந்து -14–ஐக் கழிக்கவும்.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 14}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -9 மற்றும் c-க்குப் பதிலாக 14-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 14}}{2}
-9-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-9\right)±\sqrt{81-56}}{2}
14-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-9\right)±\sqrt{25}}{2}
-56-க்கு 81-ஐக் கூட்டவும்.
x=\frac{-\left(-9\right)±5}{2}
25-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{9±5}{2}
-9-க்கு எதிரில் இருப்பது 9.
x=\frac{14}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{9±5}{2}-ஐத் தீர்க்கவும். 5-க்கு 9-ஐக் கூட்டவும்.
x=7
14-ஐ 2-ஆல் வகுக்கவும்.
x=\frac{4}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{9±5}{2}-ஐத் தீர்க்கவும். 9–இலிருந்து 5–ஐக் கழிக்கவும்.
x=2
4-ஐ 2-ஆல் வகுக்கவும்.
x=7 x=2
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x^{2}-9x=-14
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-14+\left(-\frac{9}{2}\right)^{2}
-\frac{9}{2}-ஐப் பெற, x உறுப்பின் ஈவான -9-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{9}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-9x+\frac{81}{4}=-14+\frac{81}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{9}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}-9x+\frac{81}{4}=\frac{25}{4}
\frac{81}{4}-க்கு -14-ஐக் கூட்டவும்.
\left(x-\frac{9}{2}\right)^{2}=\frac{25}{4}
காரணி x^{2}-9x+\frac{81}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{9}{2}=\frac{5}{2} x-\frac{9}{2}=-\frac{5}{2}
எளிமையாக்கவும்.
x=7 x=2
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{9}{2}-ஐக் கூட்டவும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}