பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

a+b=32 ab=1\left(-273\right)=-273
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை x^{2}+ax+bx-273-ஆக மீண்டும் எழுத வேண்டும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,273 -3,91 -7,39 -13,21
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -273 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+273=272 -3+91=88 -7+39=32 -13+21=8
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-7 b=39
32 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(x^{2}-7x\right)+\left(39x-273\right)
x^{2}+32x-273 என்பதை \left(x^{2}-7x\right)+\left(39x-273\right) என மீண்டும் எழுதவும்.
x\left(x-7\right)+39\left(x-7\right)
முதல் குழுவில் x மற்றும் இரண்டாவது குழுவில் 39-ஐக் காரணிப்படுத்தவும்.
\left(x-7\right)\left(x+39\right)
பரவல் பண்பைப் பயன்படுத்தி x-7 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x^{2}+32x-273=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-32±\sqrt{32^{2}-4\left(-273\right)}}{2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-32±\sqrt{1024-4\left(-273\right)}}{2}
32-ஐ வர்க்கமாக்கவும்.
x=\frac{-32±\sqrt{1024+1092}}{2}
-273-ஐ -4 முறை பெருக்கவும்.
x=\frac{-32±\sqrt{2116}}{2}
1092-க்கு 1024-ஐக் கூட்டவும்.
x=\frac{-32±46}{2}
2116-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{14}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-32±46}{2}-ஐத் தீர்க்கவும். 46-க்கு -32-ஐக் கூட்டவும்.
x=7
14-ஐ 2-ஆல் வகுக்கவும்.
x=-\frac{78}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-32±46}{2}-ஐத் தீர்க்கவும். -32–இலிருந்து 46–ஐக் கழிக்கவும்.
x=-39
-78-ஐ 2-ஆல் வகுக்கவும்.
x^{2}+32x-273=\left(x-7\right)\left(x-\left(-39\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 7-ஐயும், x_{2}-க்கு -39-ஐயும் பதிலீடு செய்யவும்.
x^{2}+32x-273=\left(x-7\right)\left(x+39\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.