பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4^{2}x^{2}+4x+4=0
\left(4x\right)^{2}-ஐ விரிக்கவும்.
16x^{2}+4x+4=0
2-இன் அடுக்கு 4-ஐ கணக்கிட்டு, 16-ஐப் பெறவும்.
x=\frac{-4±\sqrt{4^{2}-4\times 16\times 4}}{2\times 16}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 16, b-க்குப் பதிலாக 4 மற்றும் c-க்குப் பதிலாக 4-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-4±\sqrt{16-4\times 16\times 4}}{2\times 16}
4-ஐ வர்க்கமாக்கவும்.
x=\frac{-4±\sqrt{16-64\times 4}}{2\times 16}
16-ஐ -4 முறை பெருக்கவும்.
x=\frac{-4±\sqrt{16-256}}{2\times 16}
4-ஐ -64 முறை பெருக்கவும்.
x=\frac{-4±\sqrt{-240}}{2\times 16}
-256-க்கு 16-ஐக் கூட்டவும்.
x=\frac{-4±4\sqrt{15}i}{2\times 16}
-240-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-4±4\sqrt{15}i}{32}
16-ஐ 2 முறை பெருக்கவும்.
x=\frac{-4+4\sqrt{15}i}{32}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-4±4\sqrt{15}i}{32}-ஐத் தீர்க்கவும். 4i\sqrt{15}-க்கு -4-ஐக் கூட்டவும்.
x=\frac{-1+\sqrt{15}i}{8}
-4+4i\sqrt{15}-ஐ 32-ஆல் வகுக்கவும்.
x=\frac{-4\sqrt{15}i-4}{32}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-4±4\sqrt{15}i}{32}-ஐத் தீர்க்கவும். -4–இலிருந்து 4i\sqrt{15}–ஐக் கழிக்கவும்.
x=\frac{-\sqrt{15}i-1}{8}
-4-4i\sqrt{15}-ஐ 32-ஆல் வகுக்கவும்.
x=\frac{-1+\sqrt{15}i}{8} x=\frac{-\sqrt{15}i-1}{8}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
4^{2}x^{2}+4x+4=0
\left(4x\right)^{2}-ஐ விரிக்கவும்.
16x^{2}+4x+4=0
2-இன் அடுக்கு 4-ஐ கணக்கிட்டு, 16-ஐப் பெறவும்.
16x^{2}+4x=-4
இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
\frac{16x^{2}+4x}{16}=-\frac{4}{16}
இரு பக்கங்களையும் 16-ஆல் வகுக்கவும்.
x^{2}+\frac{4}{16}x=-\frac{4}{16}
16-ஆல் வகுத்தல் 16-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x^{2}+\frac{1}{4}x=-\frac{4}{16}
4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{4}{16}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}+\frac{1}{4}x=-\frac{1}{4}
4-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-4}{16}-ஐ குறைந்த படிக்கு குறைக்கவும்.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{8}\right)^{2}
\frac{1}{8}-ஐப் பெற, x உறுப்பின் ஈவான \frac{1}{4}-ஐ 2-ஆல் வகுக்கவும். பிறகு \frac{1}{8}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+\frac{1}{4}x+\frac{1}{64}=-\frac{1}{4}+\frac{1}{64}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், \frac{1}{8}-ஐ வர்க்கமாக்கவும்.
x^{2}+\frac{1}{4}x+\frac{1}{64}=-\frac{15}{64}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{1}{64} உடன் -\frac{1}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(x+\frac{1}{8}\right)^{2}=-\frac{15}{64}
காரணி x^{2}+\frac{1}{4}x+\frac{1}{64}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{-\frac{15}{64}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+\frac{1}{8}=\frac{\sqrt{15}i}{8} x+\frac{1}{8}=-\frac{\sqrt{15}i}{8}
எளிமையாக்கவும்.
x=\frac{-1+\sqrt{15}i}{8} x=\frac{-\sqrt{15}i-1}{8}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{8}-ஐக் கழிக்கவும்.