பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
θ குறித்து வகையிடவும்
Tick mark Image
மதிப்பிடவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\left(\sec(-\theta ^{1}+\pi )\right)^{2}\frac{\mathrm{d}}{\mathrm{d}\theta }(-\theta ^{1}+\pi )
F ஆனது f\left(u\right) மற்றும் u=g\left(x\right) ஆகிய இரண்டு வகையிடக்கூடிய சார்புகளின் தொகுப்பாக இருந்தால், அதாவது F\left(x\right)=f\left(g\left(x\right)\right) என்றால், F-இன் வகைக்கெழு என்பது u-ஐப் பொறுத்து f-இன் வகைக்கெழுவையும் x-ஐப் பொறுத்து g-இன் வகைக்கெழுவையும் பெருக்க வரும் மதிப்பாகும், அதாவது \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\left(\sec(-\theta ^{1}+\pi )\right)^{2}\left(-1\right)\theta ^{1-1}
பல்லுறுப்புக்கோவையின் வகைக்கெழு என்பது அதன் உருப்புகளின் வகைக்கெழுவின் கூட்டுத்தொகை ஆகும். மாறிலியின் வகைக்கெழு 0 ஆகும். ax^{n}-இன் வகைக்கெழு nax^{n-1} ஆகும்.
-\left(\sec(-\theta ^{1}+\pi )\right)^{2}
எளிமையாக்கவும்.
-\left(\sec(-\theta +\pi )\right)^{2}
t, t^{1}=t எந்தவொரு சொல்லுக்கும்.