பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\left(\sqrt{x}\right)^{2}=\left(x-6\right)^{2}
சமன்பாட்டின் இரு பக்கங்களையும் வர்க்கமாக்கவும்.
x=\left(x-6\right)^{2}
2-இன் அடுக்கு \sqrt{x}-ஐ கணக்கிட்டு, x-ஐப் பெறவும்.
x=x^{2}-12x+36
\left(x-6\right)^{2}-ஐ விரிக்க, ஈருறுப்புத் தேற்றத்தை \left(a-b\right)^{2}=a^{2}-2ab+b^{2} பயன்படுத்தவும்.
x-x^{2}=-12x+36
இரு பக்கங்களில் இருந்தும் x^{2}-ஐக் கழிக்கவும்.
x-x^{2}+12x=36
இரண்டு பக்கங்களிலும் 12x-ஐச் சேர்க்கவும்.
13x-x^{2}=36
x மற்றும் 12x-ஐ இணைத்தால், தீர்வு 13x.
13x-x^{2}-36=0
இரு பக்கங்களில் இருந்தும் 36-ஐக் கழிக்கவும்.
-x^{2}+13x-36=0
பல்லுறுப்புக் கோவையை வழக்கமான வடிவத்தில் இடுவதற்கு அதை மீண்டும் ஒழுங்குபடுத்தவும். உறுப்புகளை மிகஅதிக முதல் மிகக்குறைந்த அடுக்கு என்ற வரிசையில் இடவும்.
a+b=13 ab=-\left(-36\right)=36
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை -x^{2}+ax+bx-36-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,36 2,18 3,12 4,9 6,6
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் நேர்மறையாக இருக்கும். 36 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=9 b=4
13 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(-x^{2}+9x\right)+\left(4x-36\right)
-x^{2}+13x-36 என்பதை \left(-x^{2}+9x\right)+\left(4x-36\right) என மீண்டும் எழுதவும்.
-x\left(x-9\right)+4\left(x-9\right)
முதல் குழுவில் -x மற்றும் இரண்டாவது குழுவில் 4-ஐக் காரணிப்படுத்தவும்.
\left(x-9\right)\left(-x+4\right)
பரவல் பண்பைப் பயன்படுத்தி x-9 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=9 x=4
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-9=0 மற்றும் -x+4=0-ஐத் தீர்க்கவும்.
\sqrt{9}=9-6
சமன்பாடு \sqrt{x}=x-6-இல் x-க்கு 9-ஐ பதிலிடவும்.
3=3
எளிமையாக்கவும். சமன்பாட்டை x=9 மதிப்பு பூர்த்திசெய்கிறது.
\sqrt{4}=4-6
சமன்பாடு \sqrt{x}=x-6-இல் x-க்கு 4-ஐ பதிலிடவும்.
2=-2
எளிமையாக்கவும். x=4 மதிப்பு சமன்பாட்டைப் பூர்த்தி செய்யவில்லை, ஏனெனில் இடதுபுறமும் வலதுபுறமும் எதிர்க்குறிகள் உள்ளன.
x=9
\sqrt{x}=x-6 சமன்பாட்டிற்கு ஒரு தனித்துவமான தீர்வு உள்ளது.