பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

\sqrt{98}\left(2x-3\right)=6\left(x+4\right)
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது -4-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் x+4-ஆல் பெருக்கவும்.
7\sqrt{2}\left(2x-3\right)=6\left(x+4\right)
காரணி 98=7^{2}\times 2. தயாரிப்பின் வர்க்க மூலத்தை \sqrt{7^{2}\times 2} பிரிவின் வர்க்க மூலமாக மீண்டும் எழுதவும் \sqrt{7^{2}}\sqrt{2}. 7^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
14x\sqrt{2}-21\sqrt{2}=6\left(x+4\right)
7\sqrt{2}-ஐ 2x-3-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
14x\sqrt{2}-21\sqrt{2}=6x+24
6-ஐ x+4-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
14x\sqrt{2}-21\sqrt{2}-6x=24
இரு பக்கங்களில் இருந்தும் 6x-ஐக் கழிக்கவும்.
14x\sqrt{2}-6x=24+21\sqrt{2}
இரண்டு பக்கங்களிலும் 21\sqrt{2}-ஐச் சேர்க்கவும்.
\left(14\sqrt{2}-6\right)x=24+21\sqrt{2}
x உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
\left(14\sqrt{2}-6\right)x=21\sqrt{2}+24
சமன்பாடு நிலையான வடிவத்தில் உள்ளது.
\frac{\left(14\sqrt{2}-6\right)x}{14\sqrt{2}-6}=\frac{21\sqrt{2}+24}{14\sqrt{2}-6}
இரு பக்கங்களையும் 14\sqrt{2}-6-ஆல் வகுக்கவும்.
x=\frac{21\sqrt{2}+24}{14\sqrt{2}-6}
14\sqrt{2}-6-ஆல் வகுத்தல் 14\sqrt{2}-6-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
x=\frac{231\sqrt{2}}{178}+\frac{183}{89}
24+21\sqrt{2}-ஐ 14\sqrt{2}-6-ஆல் வகுக்கவும்.