x-க்காகத் தீர்க்கவும்
x=7
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\left(\sqrt{2x+35}\right)^{2}=x^{2}
சமன்பாட்டின் இரு பக்கங்களையும் வர்க்கமாக்கவும்.
2x+35=x^{2}
2-இன் அடுக்கு \sqrt{2x+35}-ஐ கணக்கிட்டு, 2x+35-ஐப் பெறவும்.
2x+35-x^{2}=0
இரு பக்கங்களில் இருந்தும் x^{2}-ஐக் கழிக்கவும்.
-x^{2}+2x+35=0
பல்லுறுப்புக் கோவையை வழக்கமான வடிவத்தில் இடுவதற்கு அதை மீண்டும் ஒழுங்குபடுத்தவும். உறுப்புகளை மிகஅதிக முதல் மிகக்குறைந்த அடுக்கு என்ற வரிசையில் இடவும்.
a+b=2 ab=-35=-35
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை -x^{2}+ax+bx+35-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,35 -5,7
ab எதிர்மறையாக இருப்பதால், a மற்றும் b எதிரெதிர் குறிகளைக் கொண்டிருக்கும். a+b நேர்மறையாக இருப்பதால், எதிர்மறை எண்ணை விட நேர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -35 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1+35=34 -5+7=2
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=7 b=-5
2 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(-x^{2}+7x\right)+\left(-5x+35\right)
-x^{2}+2x+35 என்பதை \left(-x^{2}+7x\right)+\left(-5x+35\right) என மீண்டும் எழுதவும்.
-x\left(x-7\right)-5\left(x-7\right)
முதல் குழுவில் -x மற்றும் இரண்டாவது குழுவில் -5-ஐக் காரணிப்படுத்தவும்.
\left(x-7\right)\left(-x-5\right)
பரவல் பண்பைப் பயன்படுத்தி x-7 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
x=7 x=-5
சமன்பாட்டுத் தீர்வுகளைக் கண்டறிய, x-7=0 மற்றும் -x-5=0-ஐத் தீர்க்கவும்.
\sqrt{2\times 7+35}=7
சமன்பாடு \sqrt{2x+35}=x-இல் x-க்கு 7-ஐ பதிலிடவும்.
7=7
எளிமையாக்கவும். சமன்பாட்டை x=7 மதிப்பு பூர்த்திசெய்கிறது.
\sqrt{2\left(-5\right)+35}=-5
சமன்பாடு \sqrt{2x+35}=x-இல் x-க்கு -5-ஐ பதிலிடவும்.
5=-5
எளிமையாக்கவும். x=-5 மதிப்பு சமன்பாட்டைப் பூர்த்தி செய்யவில்லை, ஏனெனில் இடதுபுறமும் வலதுபுறமும் எதிர்க்குறிகள் உள்ளன.
x=7
\sqrt{2x+35}=x சமன்பாட்டிற்கு ஒரு தனித்துவமான தீர்வு உள்ளது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}