மதிப்பிடவும்
3\sqrt{2}\approx 4.242640687
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\frac{\sqrt{9}}{\sqrt{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
வகுத்தலின் வர்க்க மூலத்தை \sqrt{\frac{9}{2}} பிரிவின் வர்க்க மூலமாக மீண்டும் எழுதவும் \frac{\sqrt{9}}{\sqrt{2}}.
\frac{3}{\sqrt{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
9-இன் இருபடி மூலத்தைக் கணக்கிட்டு, 3-ஐப் பெறுக.
\frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
பகுதி மற்றும் விகுதியினை \sqrt{2} ஆல் பெருக்கி \frac{3}{\sqrt{2}}-இன் விகுதியினை விகித எண்ணாக மாற்றுங்கள்.
\frac{3\sqrt{2}}{2}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
\sqrt{2}-இன் வர்க்கம் 2 ஆகும்.
\frac{3\sqrt{2}}{2}+\frac{\sqrt{25}}{\sqrt{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
வகுத்தலின் வர்க்க மூலத்தை \sqrt{\frac{25}{8}} பிரிவின் வர்க்க மூலமாக மீண்டும் எழுதவும் \frac{\sqrt{25}}{\sqrt{8}}.
\frac{3\sqrt{2}}{2}+\frac{5}{\sqrt{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
25-இன் இருபடி மூலத்தைக் கணக்கிட்டு, 5-ஐப் பெறுக.
\frac{3\sqrt{2}}{2}+\frac{5}{2\sqrt{2}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
காரணி 8=2^{2}\times 2. தயாரிப்பின் வர்க்க மூலத்தை \sqrt{2^{2}\times 2} பிரிவின் வர்க்க மூலமாக மீண்டும் எழுதவும் \sqrt{2^{2}}\sqrt{2}. 2^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
பகுதி மற்றும் விகுதியினை \sqrt{2} ஆல் பெருக்கி \frac{5}{2\sqrt{2}}-இன் விகுதியினை விகித எண்ணாக மாற்றுங்கள்.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2\times 2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
\sqrt{2}-இன் வர்க்கம் 2 ஆகும்.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{4}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
2 மற்றும் 2-ஐப் பெருக்கவும், தீர்வு 4.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
\frac{3\sqrt{2}}{2} மற்றும் \frac{5\sqrt{2}}{4}-ஐ இணைத்தால், தீர்வு \frac{11}{4}\sqrt{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{1}}{\sqrt{8}}
வகுத்தலின் வர்க்க மூலத்தை \sqrt{\frac{1}{8}} பிரிவின் வர்க்க மூலமாக மீண்டும் எழுதவும் \frac{\sqrt{1}}{\sqrt{8}}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{1}{\sqrt{8}}
1-இன் இருபடி மூலத்தைக் கணக்கிட்டு, 1-ஐப் பெறுக.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{1}{2\sqrt{2}}
காரணி 8=2^{2}\times 2. தயாரிப்பின் வர்க்க மூலத்தை \sqrt{2^{2}\times 2} பிரிவின் வர்க்க மூலமாக மீண்டும் எழுதவும் \sqrt{2^{2}}\sqrt{2}. 2^{2}-இன் வர்க்க மூலத்தை எடுக்கவும்.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
பகுதி மற்றும் விகுதியினை \sqrt{2} ஆல் பெருக்கி \frac{1}{2\sqrt{2}}-இன் விகுதியினை விகித எண்ணாக மாற்றுங்கள்.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{2\times 2}
\sqrt{2}-இன் வர்க்கம் 2 ஆகும்.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{4}
2 மற்றும் 2-ஐப் பெருக்கவும், தீர்வு 4.
3\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}
\frac{11}{4}\sqrt{2} மற்றும் \frac{\sqrt{2}}{4}-ஐ இணைத்தால், தீர்வு 3\sqrt{2}.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}