பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

5x+y=3,-2x+y=-4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x+y=3
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x=-y+3
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
x=\frac{1}{5}\left(-y+3\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=-\frac{1}{5}y+\frac{3}{5}
-y+3-ஐ \frac{1}{5} முறை பெருக்கவும்.
-2\left(-\frac{1}{5}y+\frac{3}{5}\right)+y=-4
பிற சமன்பாடு -2x+y=-4-இல் x-க்கு \frac{-y+3}{5}-ஐப் பிரதியிடவும்.
\frac{2}{5}y-\frac{6}{5}+y=-4
\frac{-y+3}{5}-ஐ -2 முறை பெருக்கவும்.
\frac{7}{5}y-\frac{6}{5}=-4
y-க்கு \frac{2y}{5}-ஐக் கூட்டவும்.
\frac{7}{5}y=-\frac{14}{5}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{6}{5}-ஐக் கூட்டவும்.
y=-2
சமன்பாட்டின் இரு பக்கங்களையும் \frac{7}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{1}{5}\left(-2\right)+\frac{3}{5}
x=-\frac{1}{5}y+\frac{3}{5}-இல் y-க்கு -2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{2+3}{5}
-2-ஐ -\frac{1}{5} முறை பெருக்கவும்.
x=1
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{2}{5} உடன் \frac{3}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=1,y=-2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x+y=3,-2x+y=-4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&1\\-2&1\end{matrix}\right))\left(\begin{matrix}5&1\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-2&1\end{matrix}\right))\left(\begin{matrix}3\\-4\end{matrix}\right)
\left(\begin{matrix}5&1\\-2&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-2&1\end{matrix}\right))\left(\begin{matrix}3\\-4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\-2&1\end{matrix}\right))\left(\begin{matrix}3\\-4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-\left(-2\right)}&-\frac{1}{5-\left(-2\right)}\\-\frac{-2}{5-\left(-2\right)}&\frac{5}{5-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{7}\\\frac{2}{7}&\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}3\\-4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 3-\frac{1}{7}\left(-4\right)\\\frac{2}{7}\times 3+\frac{5}{7}\left(-4\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=1,y=-2
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x+y=3,-2x+y=-4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5x+2x+y-y=3+4
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 5x+y=3-இலிருந்து -2x+y=-4-ஐக் கழிக்கவும்.
5x+2x=3+4
-y-க்கு y-ஐக் கூட்டவும். விதிகள் y மற்றும் -y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
7x=3+4
2x-க்கு 5x-ஐக் கூட்டவும்.
7x=7
4-க்கு 3-ஐக் கூட்டவும்.
x=1
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
-2+y=-4
-2x+y=-4-இல் x-க்கு 1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=-2
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.
x=1,y=-2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.