a, b-க்காகத் தீர்க்கவும்
a=4
b=9
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
4a+2b=34,16a+3b=91
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4a+2b=34
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் a-ஐத் தனிப்படுத்தி a-க்காக இதைத் தீர்க்கவும்.
4a=-2b+34
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2b-ஐக் கழிக்கவும்.
a=\frac{1}{4}\left(-2b+34\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
a=-\frac{1}{2}b+\frac{17}{2}
-2b+34-ஐ \frac{1}{4} முறை பெருக்கவும்.
16\left(-\frac{1}{2}b+\frac{17}{2}\right)+3b=91
பிற சமன்பாடு 16a+3b=91-இல் a-க்கு \frac{-b+17}{2}-ஐப் பிரதியிடவும்.
-8b+136+3b=91
\frac{-b+17}{2}-ஐ 16 முறை பெருக்கவும்.
-5b+136=91
3b-க்கு -8b-ஐக் கூட்டவும்.
-5b=-45
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 136-ஐக் கழிக்கவும்.
b=9
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
a=-\frac{1}{2}\times 9+\frac{17}{2}
a=-\frac{1}{2}b+\frac{17}{2}-இல் b-க்கு 9-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக a-க்குத் தீர்க்கலாம்.
a=\frac{-9+17}{2}
9-ஐ -\frac{1}{2} முறை பெருக்கவும்.
a=4
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{9}{2} உடன் \frac{17}{2}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
a=4,b=9
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
4a+2b=34,16a+3b=91
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&2\\16&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}34\\91\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&2\\16&3\end{matrix}\right))\left(\begin{matrix}4&2\\16&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&3\end{matrix}\right))\left(\begin{matrix}34\\91\end{matrix}\right)
\left(\begin{matrix}4&2\\16&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&3\end{matrix}\right))\left(\begin{matrix}34\\91\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&3\end{matrix}\right))\left(\begin{matrix}34\\91\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-2\times 16}&-\frac{2}{4\times 3-2\times 16}\\-\frac{16}{4\times 3-2\times 16}&\frac{4}{4\times 3-2\times 16}\end{matrix}\right)\left(\begin{matrix}34\\91\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{20}&\frac{1}{10}\\\frac{4}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}34\\91\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{20}\times 34+\frac{1}{10}\times 91\\\frac{4}{5}\times 34-\frac{1}{5}\times 91\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\9\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
a=4,b=9
அணிக் கூறுகள் a மற்றும் b-ஐப் பிரித்தெடுக்கவும்.
4a+2b=34,16a+3b=91
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
16\times 4a+16\times 2b=16\times 34,4\times 16a+4\times 3b=4\times 91
4a மற்றும் 16a-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 16-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
64a+32b=544,64a+12b=364
எளிமையாக்கவும்.
64a-64a+32b-12b=544-364
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 64a+32b=544-இலிருந்து 64a+12b=364-ஐக் கழிக்கவும்.
32b-12b=544-364
-64a-க்கு 64a-ஐக் கூட்டவும். விதிகள் 64a மற்றும் -64a ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
20b=544-364
-12b-க்கு 32b-ஐக் கூட்டவும்.
20b=180
-364-க்கு 544-ஐக் கூட்டவும்.
b=9
இரு பக்கங்களையும் 20-ஆல் வகுக்கவும்.
16a+3\times 9=91
16a+3b=91-இல் b-க்கு 9-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக a-க்குத் தீர்க்கலாம்.
16a+27=91
9-ஐ 3 முறை பெருக்கவும்.
16a=64
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 27-ஐக் கழிக்கவும்.
a=4
இரு பக்கங்களையும் 16-ஆல் வகுக்கவும்.
a=4,b=9
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}