பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x+4y=25,-4x+3y=52
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+4y=25
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-4y+25
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4y-ஐக் கழிக்கவும்.
-4\left(-4y+25\right)+3y=52
பிற சமன்பாடு -4x+3y=52-இல் x-க்கு -4y+25-ஐப் பிரதியிடவும்.
16y-100+3y=52
-4y+25-ஐ -4 முறை பெருக்கவும்.
19y-100=52
3y-க்கு 16y-ஐக் கூட்டவும்.
19y=152
சமன்பாட்டின் இரு பக்கங்களிலும் 100-ஐக் கூட்டவும்.
y=8
இரு பக்கங்களையும் 19-ஆல் வகுக்கவும்.
x=-4\times 8+25
x=-4y+25-இல் y-க்கு 8-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-32+25
8-ஐ -4 முறை பெருக்கவும்.
x=-7
-32-க்கு 25-ஐக் கூட்டவும்.
x=-7,y=8
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+4y=25,-4x+3y=52
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&4\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\52\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}1&4\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
\left(\begin{matrix}1&4\\-4&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-4\left(-4\right)}&-\frac{4}{3-4\left(-4\right)}\\-\frac{-4}{3-4\left(-4\right)}&\frac{1}{3-4\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}25\\52\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&-\frac{4}{19}\\\frac{4}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}25\\52\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}\times 25-\frac{4}{19}\times 52\\\frac{4}{19}\times 25+\frac{1}{19}\times 52\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\8\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-7,y=8
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+4y=25,-4x+3y=52
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-4x-4\times 4y=-4\times 25,-4x+3y=52
x மற்றும் -4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
-4x-16y=-100,-4x+3y=52
எளிமையாக்கவும்.
-4x+4x-16y-3y=-100-52
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -4x-16y=-100-இலிருந்து -4x+3y=52-ஐக் கழிக்கவும்.
-16y-3y=-100-52
4x-க்கு -4x-ஐக் கூட்டவும். விதிகள் -4x மற்றும் 4x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-19y=-100-52
-3y-க்கு -16y-ஐக் கூட்டவும்.
-19y=-152
-52-க்கு -100-ஐக் கூட்டவும்.
y=8
இரு பக்கங்களையும் -19-ஆல் வகுக்கவும்.
-4x+3\times 8=52
-4x+3y=52-இல் y-க்கு 8-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-4x+24=52
8-ஐ 3 முறை பெருக்கவும்.
-4x=28
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 24-ஐக் கழிக்கவும்.
x=-7
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
x=-7,y=8
இப்போது அமைப்பு சரிசெய்யப்பட்டது.