பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
y, x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

5y+x=44,y-x=4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5y+x=44
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
5y=-x+44
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் x-ஐக் கழிக்கவும்.
y=\frac{1}{5}\left(-x+44\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
y=-\frac{1}{5}x+\frac{44}{5}
-x+44-ஐ \frac{1}{5} முறை பெருக்கவும்.
-\frac{1}{5}x+\frac{44}{5}-x=4
பிற சமன்பாடு y-x=4-இல் y-க்கு \frac{-x+44}{5}-ஐப் பிரதியிடவும்.
-\frac{6}{5}x+\frac{44}{5}=4
-x-க்கு -\frac{x}{5}-ஐக் கூட்டவும்.
-\frac{6}{5}x=-\frac{24}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{44}{5}-ஐக் கழிக்கவும்.
x=4
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{6}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
y=-\frac{1}{5}\times 4+\frac{44}{5}
y=-\frac{1}{5}x+\frac{44}{5}-இல் x-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=\frac{-4+44}{5}
4-ஐ -\frac{1}{5} முறை பெருக்கவும்.
y=8
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{4}{5} உடன் \frac{44}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
y=8,x=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5y+x=44,y-x=4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}44\\4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-1}&-\frac{1}{5\left(-1\right)-1}\\-\frac{1}{5\left(-1\right)-1}&\frac{5}{5\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}44\\4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{6}&-\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}44\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 44+\frac{1}{6}\times 4\\\frac{1}{6}\times 44-\frac{5}{6}\times 4\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=8,x=4
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
5y+x=44,y-x=4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
5y+x=44,5y+5\left(-1\right)x=5\times 4
5y மற்றும் y-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் பெருக்கவும்.
5y+x=44,5y-5x=20
எளிமையாக்கவும்.
5y-5y+x+5x=44-20
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 5y+x=44-இலிருந்து 5y-5x=20-ஐக் கழிக்கவும்.
x+5x=44-20
-5y-க்கு 5y-ஐக் கூட்டவும். விதிகள் 5y மற்றும் -5y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
6x=44-20
5x-க்கு x-ஐக் கூட்டவும்.
6x=24
-20-க்கு 44-ஐக் கூட்டவும்.
x=4
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
y-4=4
y-x=4-இல் x-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=8
சமன்பாட்டின் இரு பக்கங்களிலும் 4-ஐக் கூட்டவும்.
y=8,x=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.