பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4x-2y+4=0,-4x+3y-3=0
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4x-2y+4=0
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
4x-2y=-4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4-ஐக் கழிக்கவும்.
4x=2y-4
சமன்பாட்டின் இரு பக்கங்களிலும் 2y-ஐக் கூட்டவும்.
x=\frac{1}{4}\left(2y-4\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{1}{2}y-1
-4+2y-ஐ \frac{1}{4} முறை பெருக்கவும்.
-4\left(\frac{1}{2}y-1\right)+3y-3=0
பிற சமன்பாடு -4x+3y-3=0-இல் x-க்கு \frac{y}{2}-1-ஐப் பிரதியிடவும்.
-2y+4+3y-3=0
\frac{y}{2}-1-ஐ -4 முறை பெருக்கவும்.
y+4-3=0
3y-க்கு -2y-ஐக் கூட்டவும்.
y+1=0
-3-க்கு 4-ஐக் கூட்டவும்.
y=-1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 1-ஐக் கழிக்கவும்.
x=\frac{1}{2}\left(-1\right)-1
x=\frac{1}{2}y-1-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{1}{2}-1
-1-ஐ \frac{1}{2} முறை பெருக்கவும்.
x=-\frac{3}{2}
-\frac{1}{2}-க்கு -1-ஐக் கூட்டவும்.
x=-\frac{3}{2},y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
4x-2y+4=0,-4x+3y-3=0
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-4\\3\end{matrix}\right)
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-4\\3\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-4\\3\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\left(-4\right)\right)}&-\frac{-2}{4\times 3-\left(-2\left(-4\right)\right)}\\-\frac{-4}{4\times 3-\left(-2\left(-4\right)\right)}&\frac{4}{4\times 3-\left(-2\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-4\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}-4\\3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\left(-4\right)+\frac{1}{2}\times 3\\-4+3\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2}\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-\frac{3}{2},y=-1
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
4x-2y+4=0,-4x+3y-3=0
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-4\times 4x-4\left(-2\right)y-4\times 4=0,4\left(-4\right)x+4\times 3y+4\left(-3\right)=0
4x மற்றும் -4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
-16x+8y-16=0,-16x+12y-12=0
எளிமையாக்கவும்.
-16x+16x+8y-12y-16+12=0
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -16x+8y-16=0-இலிருந்து -16x+12y-12=0-ஐக் கழிக்கவும்.
8y-12y-16+12=0
16x-க்கு -16x-ஐக் கூட்டவும். விதிகள் -16x மற்றும் 16x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-4y-16+12=0
-12y-க்கு 8y-ஐக் கூட்டவும்.
-4y-4=0
12-க்கு -16-ஐக் கூட்டவும்.
-4y=4
சமன்பாட்டின் இரு பக்கங்களிலும் 4-ஐக் கூட்டவும்.
y=-1
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
-4x+3\left(-1\right)-3=0
-4x+3y-3=0-இல் y-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-4x-3-3=0
-1-ஐ 3 முறை பெருக்கவும்.
-4x-6=0
-3-க்கு -3-ஐக் கூட்டவும்.
-4x=6
சமன்பாட்டின் இரு பக்கங்களிலும் 6-ஐக் கூட்டவும்.
x=-\frac{3}{2}
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
x=-\frac{3}{2},y=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.