பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

4x+3y=17,3x-4y+6=0
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4x+3y=17
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
4x=-3y+17
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
x=\frac{1}{4}\left(-3y+17\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=-\frac{3}{4}y+\frac{17}{4}
-3y+17-ஐ \frac{1}{4} முறை பெருக்கவும்.
3\left(-\frac{3}{4}y+\frac{17}{4}\right)-4y+6=0
பிற சமன்பாடு 3x-4y+6=0-இல் x-க்கு \frac{-3y+17}{4}-ஐப் பிரதியிடவும்.
-\frac{9}{4}y+\frac{51}{4}-4y+6=0
\frac{-3y+17}{4}-ஐ 3 முறை பெருக்கவும்.
-\frac{25}{4}y+\frac{51}{4}+6=0
-4y-க்கு -\frac{9y}{4}-ஐக் கூட்டவும்.
-\frac{25}{4}y+\frac{75}{4}=0
6-க்கு \frac{51}{4}-ஐக் கூட்டவும்.
-\frac{25}{4}y=-\frac{75}{4}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{75}{4}-ஐக் கழிக்கவும்.
y=3
சமன்பாட்டின் இரு பக்கங்களையும் -\frac{25}{4}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-\frac{3}{4}\times 3+\frac{17}{4}
x=-\frac{3}{4}y+\frac{17}{4}-இல் y-க்கு 3-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-9+17}{4}
3-ஐ -\frac{3}{4} முறை பெருக்கவும்.
x=2
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{9}{4} உடன் \frac{17}{4}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=2,y=3
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
4x+3y=17,3x-4y+6=0
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-6\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-3\times 3}&-\frac{3}{4\left(-4\right)-3\times 3}\\-\frac{3}{4\left(-4\right)-3\times 3}&\frac{4}{4\left(-4\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}17\\-6\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{3}{25}\\\frac{3}{25}&-\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}17\\-6\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 17+\frac{3}{25}\left(-6\right)\\\frac{3}{25}\times 17-\frac{4}{25}\left(-6\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=2,y=3
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
4x+3y=17,3x-4y+6=0
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3\times 4x+3\times 3y=3\times 17,4\times 3x+4\left(-4\right)y+4\times 6=0
4x மற்றும் 3x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
12x+9y=51,12x-16y+24=0
எளிமையாக்கவும்.
12x-12x+9y+16y-24=51
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 12x+9y=51-இலிருந்து 12x-16y+24=0-ஐக் கழிக்கவும்.
9y+16y-24=51
-12x-க்கு 12x-ஐக் கூட்டவும். விதிகள் 12x மற்றும் -12x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
25y-24=51
16y-க்கு 9y-ஐக் கூட்டவும்.
25y=75
சமன்பாட்டின் இரு பக்கங்களிலும் 24-ஐக் கூட்டவும்.
y=3
இரு பக்கங்களையும் 25-ஆல் வகுக்கவும்.
3x-4\times 3+6=0
3x-4y+6=0-இல் y-க்கு 3-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
3x-12+6=0
3-ஐ -4 முறை பெருக்கவும்.
3x-6=0
6-க்கு -12-ஐக் கூட்டவும்.
3x=6
சமன்பாட்டின் இரு பக்கங்களிலும் 6-ஐக் கூட்டவும்.
x=2
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=2,y=3
இப்போது அமைப்பு சரிசெய்யப்பட்டது.