பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
y, x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

y-4x=2
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 4x-ஐக் கழிக்கவும்.
y+2x=-4
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரண்டு பக்கங்களிலும் 2x-ஐச் சேர்க்கவும்.
y-4x=2,y+2x=-4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
y-4x=2
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
y=4x+2
சமன்பாட்டின் இரு பக்கங்களிலும் 4x-ஐக் கூட்டவும்.
4x+2+2x=-4
பிற சமன்பாடு y+2x=-4-இல் y-க்கு 4x+2-ஐப் பிரதியிடவும்.
6x+2=-4
2x-க்கு 4x-ஐக் கூட்டவும்.
6x=-6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.
x=-1
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
y=4\left(-1\right)+2
y=4x+2-இல் x-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=-4+2
-1-ஐ 4 முறை பெருக்கவும்.
y=-2
-4-க்கு 2-ஐக் கூட்டவும்.
y=-2,x=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
y-4x=2
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 4x-ஐக் கழிக்கவும்.
y+2x=-4
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரண்டு பக்கங்களிலும் 2x-ஐச் சேர்க்கவும்.
y-4x=2,y+2x=-4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&-4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}1&-4\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
\left(\begin{matrix}1&-4\\1&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&2\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-4\right)}&-\frac{-4}{2-\left(-4\right)}\\-\frac{1}{2-\left(-4\right)}&\frac{1}{2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 2+\frac{2}{3}\left(-4\right)\\-\frac{1}{6}\times 2+\frac{1}{6}\left(-4\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=-2,x=-1
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
y-4x=2
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 4x-ஐக் கழிக்கவும்.
y+2x=-4
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரண்டு பக்கங்களிலும் 2x-ஐச் சேர்க்கவும்.
y-4x=2,y+2x=-4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
y-y-4x-2x=2+4
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் y-4x=2-இலிருந்து y+2x=-4-ஐக் கழிக்கவும்.
-4x-2x=2+4
-y-க்கு y-ஐக் கூட்டவும். விதிகள் y மற்றும் -y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-6x=2+4
-2x-க்கு -4x-ஐக் கூட்டவும்.
-6x=6
4-க்கு 2-ஐக் கூட்டவும்.
x=-1
இரு பக்கங்களையும் -6-ஆல் வகுக்கவும்.
y+2\left(-1\right)=-4
y+2x=-4-இல் x-க்கு -1-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y-2=-4
-1-ஐ 2 முறை பெருக்கவும்.
y=-2
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.
y=-2,x=-1
இப்போது அமைப்பு சரிசெய்யப்பட்டது.