y, x-க்காகத் தீர்க்கவும்
x=10
y=20
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
y-2x=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2x-ஐக் கழிக்கவும்.
y-2x=0,200y+300x=7000
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
y-2x=0
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
y=2x
சமன்பாட்டின் இரு பக்கங்களிலும் 2x-ஐக் கூட்டவும்.
200\times 2x+300x=7000
பிற சமன்பாடு 200y+300x=7000-இல் y-க்கு 2x-ஐப் பிரதியிடவும்.
400x+300x=7000
2x-ஐ 200 முறை பெருக்கவும்.
700x=7000
300x-க்கு 400x-ஐக் கூட்டவும்.
x=10
இரு பக்கங்களையும் 700-ஆல் வகுக்கவும்.
y=2\times 10
y=2x-இல் x-க்கு 10-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=20
10-ஐ 2 முறை பெருக்கவும்.
y=20,x=10
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
y-2x=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2x-ஐக் கழிக்கவும்.
y-2x=0,200y+300x=7000
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&-2\\200&300\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\7000\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}1&-2\\200&300\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}0\\7000\end{matrix}\right)
\left(\begin{matrix}1&-2\\200&300\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}0\\7000\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}0\\7000\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{300}{300-\left(-2\times 200\right)}&-\frac{-2}{300-\left(-2\times 200\right)}\\-\frac{200}{300-\left(-2\times 200\right)}&\frac{1}{300-\left(-2\times 200\right)}\end{matrix}\right)\left(\begin{matrix}0\\7000\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{1}{350}\\-\frac{2}{7}&\frac{1}{700}\end{matrix}\right)\left(\begin{matrix}0\\7000\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{350}\times 7000\\\frac{1}{700}\times 7000\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}20\\10\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=20,x=10
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
y-2x=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2x-ஐக் கழிக்கவும்.
y-2x=0,200y+300x=7000
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
200y+200\left(-2\right)x=0,200y+300x=7000
y மற்றும் 200y-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 200-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
200y-400x=0,200y+300x=7000
எளிமையாக்கவும்.
200y-200y-400x-300x=-7000
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 200y-400x=0-இலிருந்து 200y+300x=7000-ஐக் கழிக்கவும்.
-400x-300x=-7000
-200y-க்கு 200y-ஐக் கூட்டவும். விதிகள் 200y மற்றும் -200y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-700x=-7000
-300x-க்கு -400x-ஐக் கூட்டவும்.
x=10
இரு பக்கங்களையும் -700-ஆல் வகுக்கவும்.
200y+300\times 10=7000
200y+300x=7000-இல் x-க்கு 10-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
200y+3000=7000
10-ஐ 300 முறை பெருக்கவும்.
200y=4000
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3000-ஐக் கழிக்கவும்.
y=20
இரு பக்கங்களையும் 200-ஆல் வகுக்கவும்.
y=20,x=10
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}