பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x-4y=4,7x-7y=-14
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x-4y=4
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=4y+4
சமன்பாட்டின் இரு பக்கங்களிலும் 4y-ஐக் கூட்டவும்.
7\left(4y+4\right)-7y=-14
பிற சமன்பாடு 7x-7y=-14-இல் x-க்கு 4+4y-ஐப் பிரதியிடவும்.
28y+28-7y=-14
4+4y-ஐ 7 முறை பெருக்கவும்.
21y+28=-14
-7y-க்கு 28y-ஐக் கூட்டவும்.
21y=-42
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 28-ஐக் கழிக்கவும்.
y=-2
இரு பக்கங்களையும் 21-ஆல் வகுக்கவும்.
x=4\left(-2\right)+4
x=4y+4-இல் y-க்கு -2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-8+4
-2-ஐ 4 முறை பெருக்கவும்.
x=-4
-8-க்கு 4-ஐக் கூட்டவும்.
x=-4,y=-2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x-4y=4,7x-7y=-14
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-14\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\7&-7\end{matrix}\right))\left(\begin{matrix}4\\-14\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-4\times 7\right)}&-\frac{-4}{-7-\left(-4\times 7\right)}\\-\frac{7}{-7-\left(-4\times 7\right)}&\frac{1}{-7-\left(-4\times 7\right)}\end{matrix}\right)\left(\begin{matrix}4\\-14\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{21}\\-\frac{1}{3}&\frac{1}{21}\end{matrix}\right)\left(\begin{matrix}4\\-14\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{4}{21}\left(-14\right)\\-\frac{1}{3}\times 4+\frac{1}{21}\left(-14\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-4,y=-2
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x-4y=4,7x-7y=-14
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
7x+7\left(-4\right)y=7\times 4,7x-7y=-14
x மற்றும் 7x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 7-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
7x-28y=28,7x-7y=-14
எளிமையாக்கவும்.
7x-7x-28y+7y=28+14
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 7x-28y=28-இலிருந்து 7x-7y=-14-ஐக் கழிக்கவும்.
-28y+7y=28+14
-7x-க்கு 7x-ஐக் கூட்டவும். விதிகள் 7x மற்றும் -7x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-21y=28+14
7y-க்கு -28y-ஐக் கூட்டவும்.
-21y=42
14-க்கு 28-ஐக் கூட்டவும்.
y=-2
இரு பக்கங்களையும் -21-ஆல் வகுக்கவும்.
7x-7\left(-2\right)=-14
7x-7y=-14-இல் y-க்கு -2-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
7x+14=-14
-2-ஐ -7 முறை பெருக்கவும்.
7x=-28
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 14-ஐக் கழிக்கவும்.
x=-4
இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
x=-4,y=-2
இப்போது அமைப்பு சரிசெய்யப்பட்டது.