x, y-க்காகத் தீர்க்கவும்
x=80
y=160
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
x+y=240,0.12x+0.06y=19.2
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+y=240
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-y+240
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
0.12\left(-y+240\right)+0.06y=19.2
பிற சமன்பாடு 0.12x+0.06y=19.2-இல் x-க்கு -y+240-ஐப் பிரதியிடவும்.
-0.12y+28.8+0.06y=19.2
-y+240-ஐ 0.12 முறை பெருக்கவும்.
-0.06y+28.8=19.2
\frac{3y}{50}-க்கு -\frac{3y}{25}-ஐக் கூட்டவும்.
-0.06y=-9.6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 28.8-ஐக் கழிக்கவும்.
y=160
சமன்பாட்டின் இரு பக்கங்களையும் -0.06-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=-160+240
x=-y+240-இல் y-க்கு 160-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=80
-160-க்கு 240-ஐக் கூட்டவும்.
x=80,y=160
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+y=240,0.12x+0.06y=19.2
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}240\\19.2\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right))\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right))\left(\begin{matrix}240\\19.2\end{matrix}\right)
\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right))\left(\begin{matrix}240\\19.2\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.12&0.06\end{matrix}\right))\left(\begin{matrix}240\\19.2\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.06}{0.06-0.12}&-\frac{1}{0.06-0.12}\\-\frac{0.12}{0.06-0.12}&\frac{1}{0.06-0.12}\end{matrix}\right)\left(\begin{matrix}240\\19.2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{50}{3}\\2&-\frac{50}{3}\end{matrix}\right)\left(\begin{matrix}240\\19.2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-240+\frac{50}{3}\times 19.2\\2\times 240-\frac{50}{3}\times 19.2\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}80\\160\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=80,y=160
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+y=240,0.12x+0.06y=19.2
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
0.12x+0.12y=0.12\times 240,0.12x+0.06y=19.2
x மற்றும் \frac{3x}{25}-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 0.12-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
0.12x+0.12y=28.8,0.12x+0.06y=19.2
எளிமையாக்கவும்.
0.12x-0.12x+0.12y-0.06y=\frac{144-96}{5}
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 0.12x+0.12y=28.8-இலிருந்து 0.12x+0.06y=19.2-ஐக் கழிக்கவும்.
0.12y-0.06y=\frac{144-96}{5}
-\frac{3x}{25}-க்கு \frac{3x}{25}-ஐக் கூட்டவும். விதிகள் \frac{3x}{25} மற்றும் -\frac{3x}{25} ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
0.06y=\frac{144-96}{5}
-\frac{3y}{50}-க்கு \frac{3y}{25}-ஐக் கூட்டவும்.
0.06y=9.6
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -19.2 உடன் 28.8-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
y=160
சமன்பாட்டின் இரு பக்கங்களையும் 0.06-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
0.12x+0.06\times 160=19.2
0.12x+0.06y=19.2-இல் y-க்கு 160-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
0.12x+9.6=19.2
160-ஐ 0.06 முறை பெருக்கவும்.
0.12x=9.6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 9.6-ஐக் கழிக்கவும்.
x=80
சமன்பாட்டின் இரு பக்கங்களையும் 0.12-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=80,y=160
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}