பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x+3y=7,3x+y=17
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+3y=7
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-3y+7
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
3\left(-3y+7\right)+y=17
பிற சமன்பாடு 3x+y=17-இல் x-க்கு -3y+7-ஐப் பிரதியிடவும்.
-9y+21+y=17
-3y+7-ஐ 3 முறை பெருக்கவும்.
-8y+21=17
y-க்கு -9y-ஐக் கூட்டவும்.
-8y=-4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 21-ஐக் கழிக்கவும்.
y=\frac{1}{2}
இரு பக்கங்களையும் -8-ஆல் வகுக்கவும்.
x=-3\times \frac{1}{2}+7
x=-3y+7-இல் y-க்கு \frac{1}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{3}{2}+7
\frac{1}{2}-ஐ -3 முறை பெருக்கவும்.
x=\frac{11}{2}
-\frac{3}{2}-க்கு 7-ஐக் கூட்டவும்.
x=\frac{11}{2},y=\frac{1}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+3y=7,3x+y=17
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&3\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\17\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&3\\3&1\end{matrix}\right))\left(\begin{matrix}1&3\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\3&1\end{matrix}\right))\left(\begin{matrix}7\\17\end{matrix}\right)
\left(\begin{matrix}1&3\\3&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\3&1\end{matrix}\right))\left(\begin{matrix}7\\17\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\3&1\end{matrix}\right))\left(\begin{matrix}7\\17\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3\times 3}&-\frac{3}{1-3\times 3}\\-\frac{3}{1-3\times 3}&\frac{1}{1-3\times 3}\end{matrix}\right)\left(\begin{matrix}7\\17\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{3}{8}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}7\\17\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\times 7+\frac{3}{8}\times 17\\\frac{3}{8}\times 7-\frac{1}{8}\times 17\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{2}\\\frac{1}{2}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{11}{2},y=\frac{1}{2}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+3y=7,3x+y=17
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3x+3\times 3y=3\times 7,3x+y=17
x மற்றும் 3x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
3x+9y=21,3x+y=17
எளிமையாக்கவும்.
3x-3x+9y-y=21-17
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 3x+9y=21-இலிருந்து 3x+y=17-ஐக் கழிக்கவும்.
9y-y=21-17
-3x-க்கு 3x-ஐக் கூட்டவும். விதிகள் 3x மற்றும் -3x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
8y=21-17
-y-க்கு 9y-ஐக் கூட்டவும்.
8y=4
-17-க்கு 21-ஐக் கூட்டவும்.
y=\frac{1}{2}
இரு பக்கங்களையும் 8-ஆல் வகுக்கவும்.
3x+\frac{1}{2}=17
3x+y=17-இல் y-க்கு \frac{1}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
3x=\frac{33}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{2}-ஐக் கழிக்கவும்.
x=\frac{11}{2}
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{11}{2},y=\frac{1}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.