பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x+2y=1,-2x+y=-4
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
x+2y=1
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
x=-2y+1
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
-2\left(-2y+1\right)+y=-4
பிற சமன்பாடு -2x+y=-4-இல் x-க்கு -2y+1-ஐப் பிரதியிடவும்.
4y-2+y=-4
-2y+1-ஐ -2 முறை பெருக்கவும்.
5y-2=-4
y-க்கு 4y-ஐக் கூட்டவும்.
5y=-2
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.
y=-\frac{2}{5}
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=-2\left(-\frac{2}{5}\right)+1
x=-2y+1-இல் y-க்கு -\frac{2}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{4}{5}+1
-\frac{2}{5}-ஐ -2 முறை பெருக்கவும்.
x=\frac{9}{5}
\frac{4}{5}-க்கு 1-ஐக் கூட்டவும்.
x=\frac{9}{5},y=-\frac{2}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
x+2y=1,-2x+y=-4
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
\left(\begin{matrix}1&2\\-2&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\-2&1\end{matrix}\right))\left(\begin{matrix}1\\-4\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\left(-2\right)}&-\frac{2}{1-2\left(-2\right)}\\-\frac{-2}{1-2\left(-2\right)}&\frac{1}{1-2\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{2}{5}\\\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\-4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}-\frac{2}{5}\left(-4\right)\\\frac{2}{5}+\frac{1}{5}\left(-4\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5}\\-\frac{2}{5}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{9}{5},y=-\frac{2}{5}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
x+2y=1,-2x+y=-4
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-2x-2\times 2y=-2,-2x+y=-4
x மற்றும் -2x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -2-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் பெருக்கவும்.
-2x-4y=-2,-2x+y=-4
எளிமையாக்கவும்.
-2x+2x-4y-y=-2+4
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -2x-4y=-2-இலிருந்து -2x+y=-4-ஐக் கழிக்கவும்.
-4y-y=-2+4
2x-க்கு -2x-ஐக் கூட்டவும். விதிகள் -2x மற்றும் 2x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-5y=-2+4
-y-க்கு -4y-ஐக் கூட்டவும்.
-5y=2
4-க்கு -2-ஐக் கூட்டவும்.
y=-\frac{2}{5}
இரு பக்கங்களையும் -5-ஆல் வகுக்கவும்.
-2x-\frac{2}{5}=-4
-2x+y=-4-இல் y-க்கு -\frac{2}{5}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-2x=-\frac{18}{5}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{2}{5}-ஐக் கூட்டவும்.
x=\frac{9}{5}
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
x=\frac{9}{5},y=-\frac{2}{5}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.