a, b-க்காகத் தீர்க்கவும்
a=240
b=48
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
\frac{a}{4}-12-b=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் b-ஐக் கழிக்கவும்.
\frac{a}{4}-b=12
இரண்டு பக்கங்களிலும் 12-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
a-4b=48
சமன்பாட்டின் இரு பக்கங்களையும் 4-ஆல் பெருக்கவும்.
\frac{a}{5}-b=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் b-ஐக் கழிக்கவும்.
a-5b=0
சமன்பாட்டின் இரு பக்கங்களையும் 5-ஆல் பெருக்கவும்.
a-4b=48,a-5b=0
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
a-4b=48
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் a-ஐத் தனிப்படுத்தி a-க்காக இதைத் தீர்க்கவும்.
a=4b+48
சமன்பாட்டின் இரு பக்கங்களிலும் 4b-ஐக் கூட்டவும்.
4b+48-5b=0
பிற சமன்பாடு a-5b=0-இல் a-க்கு 48+4b-ஐப் பிரதியிடவும்.
-b+48=0
-5b-க்கு 4b-ஐக் கூட்டவும்.
-b=-48
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 48-ஐக் கழிக்கவும்.
b=48
இரு பக்கங்களையும் -1-ஆல் வகுக்கவும்.
a=4\times 48+48
a=4b+48-இல் b-க்கு 48-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக a-க்குத் தீர்க்கலாம்.
a=192+48
48-ஐ 4 முறை பெருக்கவும்.
a=240
192-க்கு 48-ஐக் கூட்டவும்.
a=240,b=48
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
\frac{a}{4}-12-b=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் b-ஐக் கழிக்கவும்.
\frac{a}{4}-b=12
இரண்டு பக்கங்களிலும் 12-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
a-4b=48
சமன்பாட்டின் இரு பக்கங்களையும் 4-ஆல் பெருக்கவும்.
\frac{a}{5}-b=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் b-ஐக் கழிக்கவும்.
a-5b=0
சமன்பாட்டின் இரு பக்கங்களையும் 5-ஆல் பெருக்கவும்.
a-4b=48,a-5b=0
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}48\\0\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right))\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right))\left(\begin{matrix}48\\0\end{matrix}\right)
\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right))\left(\begin{matrix}48\\0\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-5\end{matrix}\right))\left(\begin{matrix}48\\0\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-\left(-4\right)}&-\frac{-4}{-5-\left(-4\right)}\\-\frac{1}{-5-\left(-4\right)}&\frac{1}{-5-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}48\\0\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5&-4\\1&-1\end{matrix}\right)\left(\begin{matrix}48\\0\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\times 48\\48\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}240\\48\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
a=240,b=48
அணிக் கூறுகள் a மற்றும் b-ஐப் பிரித்தெடுக்கவும்.
\frac{a}{4}-12-b=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் b-ஐக் கழிக்கவும்.
\frac{a}{4}-b=12
இரண்டு பக்கங்களிலும் 12-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
a-4b=48
சமன்பாட்டின் இரு பக்கங்களையும் 4-ஆல் பெருக்கவும்.
\frac{a}{5}-b=0
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் b-ஐக் கழிக்கவும்.
a-5b=0
சமன்பாட்டின் இரு பக்கங்களையும் 5-ஆல் பெருக்கவும்.
a-4b=48,a-5b=0
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
a-a-4b+5b=48
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் a-4b=48-இலிருந்து a-5b=0-ஐக் கழிக்கவும்.
-4b+5b=48
-a-க்கு a-ஐக் கூட்டவும். விதிகள் a மற்றும் -a ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
b=48
5b-க்கு -4b-ஐக் கூட்டவும்.
a-5\times 48=0
a-5b=0-இல் b-க்கு 48-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக a-க்குத் தீர்க்கலாம்.
a-240=0
48-ஐ -5 முறை பெருக்கவும்.
a=240
சமன்பாட்டின் இரு பக்கங்களிலும் 240-ஐக் கூட்டவும்.
a=240,b=48
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}