A, B-க்காகத் தீர்க்கவும்
A=5
B=4
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
A+B=9,A-B=1
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
A+B=9
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் A-ஐத் தனிப்படுத்தி A-க்காக இதைத் தீர்க்கவும்.
A=-B+9
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் B-ஐக் கழிக்கவும்.
-B+9-B=1
பிற சமன்பாடு A-B=1-இல் A-க்கு -B+9-ஐப் பிரதியிடவும்.
-2B+9=1
-B-க்கு -B-ஐக் கூட்டவும்.
-2B=-8
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 9-ஐக் கழிக்கவும்.
B=4
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
A=-4+9
A=-B+9-இல் B-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக A-க்குத் தீர்க்கலாம்.
A=5
-4-க்கு 9-ஐக் கூட்டவும்.
A=5,B=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
A+B=9,A-B=1
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}9\\1\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\1\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}9\\1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 9+\frac{1}{2}\\\frac{1}{2}\times 9-\frac{1}{2}\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}5\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
A=5,B=4
அணிக் கூறுகள் A மற்றும் B-ஐப் பிரித்தெடுக்கவும்.
A+B=9,A-B=1
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
A-A+B+B=9-1
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் A+B=9-இலிருந்து A-B=1-ஐக் கழிக்கவும்.
B+B=9-1
-A-க்கு A-ஐக் கூட்டவும். விதிகள் A மற்றும் -A ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
2B=9-1
B-க்கு B-ஐக் கூட்டவும்.
2B=8
-1-க்கு 9-ஐக் கூட்டவும்.
B=4
இரு பக்கங்களையும் 2-ஆல் வகுக்கவும்.
A-4=1
A-B=1-இல் B-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக A-க்குத் தீர்க்கலாம்.
A=5
சமன்பாட்டின் இரு பக்கங்களிலும் 4-ஐக் கூட்டவும்.
A=5,B=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}