x, y-க்காகத் தீர்க்கவும்
x=-0.05
y=0.05
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
80x+160y=4,x+3y=0.1
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
80x+160y=4
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
80x=-160y+4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 160y-ஐக் கழிக்கவும்.
x=\frac{1}{80}\left(-160y+4\right)
இரு பக்கங்களையும் 80-ஆல் வகுக்கவும்.
x=-2y+\frac{1}{20}
-160y+4-ஐ \frac{1}{80} முறை பெருக்கவும்.
-2y+\frac{1}{20}+3y=0.1
பிற சமன்பாடு x+3y=0.1-இல் x-க்கு -2y+\frac{1}{20}-ஐப் பிரதியிடவும்.
y+\frac{1}{20}=0.1
3y-க்கு -2y-ஐக் கூட்டவும்.
y=\frac{1}{20}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{1}{20}-ஐக் கழிக்கவும்.
x=-2\times \frac{1}{20}+\frac{1}{20}
x=-2y+\frac{1}{20}-இல் y-க்கு \frac{1}{20}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{1}{10}+\frac{1}{20}
\frac{1}{20}-ஐ -2 முறை பெருக்கவும்.
x=-\frac{1}{20}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{1}{10} உடன் \frac{1}{20}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=-\frac{1}{20},y=\frac{1}{20}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
80x+160y=4,x+3y=0.1
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}80&160\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\0.1\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}80&160\\1&3\end{matrix}\right))\left(\begin{matrix}80&160\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\1&3\end{matrix}\right))\left(\begin{matrix}4\\0.1\end{matrix}\right)
\left(\begin{matrix}80&160\\1&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\1&3\end{matrix}\right))\left(\begin{matrix}4\\0.1\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\1&3\end{matrix}\right))\left(\begin{matrix}4\\0.1\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{80\times 3-160}&-\frac{160}{80\times 3-160}\\-\frac{1}{80\times 3-160}&\frac{80}{80\times 3-160}\end{matrix}\right)\left(\begin{matrix}4\\0.1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{80}&-2\\-\frac{1}{80}&1\end{matrix}\right)\left(\begin{matrix}4\\0.1\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{80}\times 4-2\times 0.1\\-\frac{1}{80}\times 4+0.1\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\\\frac{1}{20}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=-\frac{1}{20},y=\frac{1}{20}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
80x+160y=4,x+3y=0.1
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
80x+160y=4,80x+80\times 3y=80\times 0.1
80x மற்றும் x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 80-ஆலும் பெருக்கவும்.
80x+160y=4,80x+240y=8
எளிமையாக்கவும்.
80x-80x+160y-240y=4-8
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 80x+160y=4-இலிருந்து 80x+240y=8-ஐக் கழிக்கவும்.
160y-240y=4-8
-80x-க்கு 80x-ஐக் கூட்டவும். விதிகள் 80x மற்றும் -80x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-80y=4-8
-240y-க்கு 160y-ஐக் கூட்டவும்.
-80y=-4
-8-க்கு 4-ஐக் கூட்டவும்.
y=\frac{1}{20}
இரு பக்கங்களையும் -80-ஆல் வகுக்கவும்.
x+3\times \frac{1}{20}=0.1
x+3y=0.1-இல் y-க்கு \frac{1}{20}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x+\frac{3}{20}=0.1
\frac{1}{20}-ஐ 3 முறை பெருக்கவும்.
x=-\frac{1}{20}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{3}{20}-ஐக் கழிக்கவும்.
x=-\frac{1}{20},y=\frac{1}{20}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}