x, y-க்காகத் தீர்க்கவும்
x=1
y=6
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
8+4x-2y=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
4x-2y=-8
இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
-4x+3y=14
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரண்டு பக்கங்களிலும் 3y-ஐச் சேர்க்கவும்.
4x-2y=-8,-4x+3y=14
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
4x-2y=-8
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
4x=2y-8
சமன்பாட்டின் இரு பக்கங்களிலும் 2y-ஐக் கூட்டவும்.
x=\frac{1}{4}\left(2y-8\right)
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{1}{2}y-2
-8+2y-ஐ \frac{1}{4} முறை பெருக்கவும்.
-4\left(\frac{1}{2}y-2\right)+3y=14
பிற சமன்பாடு -4x+3y=14-இல் x-க்கு \frac{y}{2}-2-ஐப் பிரதியிடவும்.
-2y+8+3y=14
\frac{y}{2}-2-ஐ -4 முறை பெருக்கவும்.
y+8=14
3y-க்கு -2y-ஐக் கூட்டவும்.
y=6
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும்.
x=\frac{1}{2}\times 6-2
x=\frac{1}{2}y-2-இல் y-க்கு 6-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=3-2
6-ஐ \frac{1}{2} முறை பெருக்கவும்.
x=1
3-க்கு -2-ஐக் கூட்டவும்.
x=1,y=6
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
8+4x-2y=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
4x-2y=-8
இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
-4x+3y=14
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரண்டு பக்கங்களிலும் 3y-ஐச் சேர்க்கவும்.
4x-2y=-8,-4x+3y=14
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\14\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\left(-4\right)\right)}&-\frac{-2}{4\times 3-\left(-2\left(-4\right)\right)}\\-\frac{-4}{4\times 3-\left(-2\left(-4\right)\right)}&\frac{4}{4\times 3-\left(-2\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-8\\14\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}-8\\14\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\left(-8\right)+\frac{1}{2}\times 14\\-8+14\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=1,y=6
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
8+4x-2y=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 2y-ஐக் கழிக்கவும்.
4x-2y=-8
இரு பக்கங்களில் இருந்தும் 8-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
-4x+3y=14
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரண்டு பக்கங்களிலும் 3y-ஐச் சேர்க்கவும்.
4x-2y=-8,-4x+3y=14
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
-4\times 4x-4\left(-2\right)y=-4\left(-8\right),4\left(-4\right)x+4\times 3y=4\times 14
4x மற்றும் -4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் -4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் பெருக்கவும்.
-16x+8y=32,-16x+12y=56
எளிமையாக்கவும்.
-16x+16x+8y-12y=32-56
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் -16x+8y=32-இலிருந்து -16x+12y=56-ஐக் கழிக்கவும்.
8y-12y=32-56
16x-க்கு -16x-ஐக் கூட்டவும். விதிகள் -16x மற்றும் 16x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-4y=32-56
-12y-க்கு 8y-ஐக் கூட்டவும்.
-4y=-24
-56-க்கு 32-ஐக் கூட்டவும்.
y=6
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
-4x+3\times 6=14
-4x+3y=14-இல் y-க்கு 6-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
-4x+18=14
6-ஐ 3 முறை பெருக்கவும்.
-4x=-4
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 18-ஐக் கழிக்கவும்.
x=1
இரு பக்கங்களையும் -4-ஆல் வகுக்கவும்.
x=1,y=6
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}