y, x-க்காகத் தீர்க்கவும்
x = \frac{273}{2} = 136\frac{1}{2} = 136.5
y = -\frac{173}{2} = -86\frac{1}{2} = -86.5
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
6y+4x=27,y+x=50
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
6y+4x=27
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் y-ஐத் தனிப்படுத்தி y-க்காக இதைத் தீர்க்கவும்.
6y=-4x+27
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 4x-ஐக் கழிக்கவும்.
y=\frac{1}{6}\left(-4x+27\right)
இரு பக்கங்களையும் 6-ஆல் வகுக்கவும்.
y=-\frac{2}{3}x+\frac{9}{2}
-4x+27-ஐ \frac{1}{6} முறை பெருக்கவும்.
-\frac{2}{3}x+\frac{9}{2}+x=50
பிற சமன்பாடு y+x=50-இல் y-க்கு -\frac{2x}{3}+\frac{9}{2}-ஐப் பிரதியிடவும்.
\frac{1}{3}x+\frac{9}{2}=50
x-க்கு -\frac{2x}{3}-ஐக் கூட்டவும்.
\frac{1}{3}x=\frac{91}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{9}{2}-ஐக் கழிக்கவும்.
x=\frac{273}{2}
இரு பக்கங்களையும் 3-ஆல் பெருக்கவும்.
y=-\frac{2}{3}\times \frac{273}{2}+\frac{9}{2}
y=-\frac{2}{3}x+\frac{9}{2}-இல் x-க்கு \frac{273}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=-91+\frac{9}{2}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், \frac{273}{2}-ஐ -\frac{2}{3} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
y=-\frac{173}{2}
-91-க்கு \frac{9}{2}-ஐக் கூட்டவும்.
y=-\frac{173}{2},x=\frac{273}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
6y+4x=27,y+x=50
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}6&4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}27\\50\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}6&4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}27\\50\end{matrix}\right)
\left(\begin{matrix}6&4\\1&1\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}27\\50\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}27\\50\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-4}&-\frac{4}{6-4}\\-\frac{1}{6-4}&\frac{6}{6-4}\end{matrix}\right)\left(\begin{matrix}27\\50\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-2\\-\frac{1}{2}&3\end{matrix}\right)\left(\begin{matrix}27\\50\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 27-2\times 50\\-\frac{1}{2}\times 27+3\times 50\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{173}{2}\\\frac{273}{2}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
y=-\frac{173}{2},x=\frac{273}{2}
அணிக் கூறுகள் y மற்றும் x-ஐப் பிரித்தெடுக்கவும்.
6y+4x=27,y+x=50
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
6y+4x=27,6y+6x=6\times 50
6y மற்றும் y-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 1-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 6-ஆலும் பெருக்கவும்.
6y+4x=27,6y+6x=300
எளிமையாக்கவும்.
6y-6y+4x-6x=27-300
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 6y+4x=27-இலிருந்து 6y+6x=300-ஐக் கழிக்கவும்.
4x-6x=27-300
-6y-க்கு 6y-ஐக் கூட்டவும். விதிகள் 6y மற்றும் -6y ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-2x=27-300
-6x-க்கு 4x-ஐக் கூட்டவும்.
-2x=-273
-300-க்கு 27-ஐக் கூட்டவும்.
x=\frac{273}{2}
இரு பக்கங்களையும் -2-ஆல் வகுக்கவும்.
y+\frac{273}{2}=50
y+x=50-இல் x-க்கு \frac{273}{2}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக y-க்குத் தீர்க்கலாம்.
y=-\frac{173}{2}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{273}{2}-ஐக் கழிக்கவும்.
y=-\frac{173}{2},x=\frac{273}{2}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}