x, y-க்காகத் தீர்க்கவும்
x = \frac{18}{13} = 1\frac{5}{13} \approx 1.384615385
y = -\frac{14}{13} = -1\frac{1}{13} \approx -1.076923077
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
5x-8-y=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
5x-y=8
இரண்டு பக்கங்களிலும் 8-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
5x-y=8,3x+2y=2
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x-y=8
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x=y+8
சமன்பாட்டின் இரு பக்கங்களிலும் y-ஐக் கூட்டவும்.
x=\frac{1}{5}\left(y+8\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{1}{5}y+\frac{8}{5}
y+8-ஐ \frac{1}{5} முறை பெருக்கவும்.
3\left(\frac{1}{5}y+\frac{8}{5}\right)+2y=2
பிற சமன்பாடு 3x+2y=2-இல் x-க்கு \frac{8+y}{5}-ஐப் பிரதியிடவும்.
\frac{3}{5}y+\frac{24}{5}+2y=2
\frac{8+y}{5}-ஐ 3 முறை பெருக்கவும்.
\frac{13}{5}y+\frac{24}{5}=2
2y-க்கு \frac{3y}{5}-ஐக் கூட்டவும்.
\frac{13}{5}y=-\frac{14}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{24}{5}-ஐக் கழிக்கவும்.
y=-\frac{14}{13}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{13}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{1}{5}\left(-\frac{14}{13}\right)+\frac{8}{5}
x=\frac{1}{5}y+\frac{8}{5}-இல் y-க்கு -\frac{14}{13}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{14}{65}+\frac{8}{5}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{14}{13}-ஐ \frac{1}{5} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{18}{13}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{14}{65} உடன் \frac{8}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{18}{13},y=-\frac{14}{13}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x-8-y=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
5x-y=8
இரண்டு பக்கங்களிலும் 8-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
5x-y=8,3x+2y=2
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\2\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}5&-1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
\left(\begin{matrix}5&-1\\3&2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&2\end{matrix}\right))\left(\begin{matrix}8\\2\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-3\right)}&-\frac{-1}{5\times 2-\left(-3\right)}\\-\frac{3}{5\times 2-\left(-3\right)}&\frac{5}{5\times 2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}8\\2\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{1}{13}\\-\frac{3}{13}&\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}8\\2\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 8+\frac{1}{13}\times 2\\-\frac{3}{13}\times 8+\frac{5}{13}\times 2\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{13}\\-\frac{14}{13}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{18}{13},y=-\frac{14}{13}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x-8-y=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
5x-y=8
இரண்டு பக்கங்களிலும் 8-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
5x-y=8,3x+2y=2
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3\times 5x+3\left(-1\right)y=3\times 8,5\times 3x+5\times 2y=5\times 2
5x மற்றும் 3x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் பெருக்கவும்.
15x-3y=24,15x+10y=10
எளிமையாக்கவும்.
15x-15x-3y-10y=24-10
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 15x-3y=24-இலிருந்து 15x+10y=10-ஐக் கழிக்கவும்.
-3y-10y=24-10
-15x-க்கு 15x-ஐக் கூட்டவும். விதிகள் 15x மற்றும் -15x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-13y=24-10
-10y-க்கு -3y-ஐக் கூட்டவும்.
-13y=14
-10-க்கு 24-ஐக் கூட்டவும்.
y=-\frac{14}{13}
இரு பக்கங்களையும் -13-ஆல் வகுக்கவும்.
3x+2\left(-\frac{14}{13}\right)=2
3x+2y=2-இல் y-க்கு -\frac{14}{13}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
3x-\frac{28}{13}=2
-\frac{14}{13}-ஐ 2 முறை பெருக்கவும்.
3x=\frac{54}{13}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{28}{13}-ஐக் கூட்டவும்.
x=\frac{18}{13}
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=\frac{18}{13},y=-\frac{14}{13}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}