x, y-க்காகத் தீர்க்கவும்
x=\frac{5}{47}\approx 0.106382979
y=-\frac{23}{47}\approx -0.489361702
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
5x-3y-2=0,4x+7y+3=0
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x-3y-2=0
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x-3y=2
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.
5x=3y+2
சமன்பாட்டின் இரு பக்கங்களிலும் 3y-ஐக் கூட்டவும்.
x=\frac{1}{5}\left(3y+2\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{3}{5}y+\frac{2}{5}
3y+2-ஐ \frac{1}{5} முறை பெருக்கவும்.
4\left(\frac{3}{5}y+\frac{2}{5}\right)+7y+3=0
பிற சமன்பாடு 4x+7y+3=0-இல் x-க்கு \frac{3y+2}{5}-ஐப் பிரதியிடவும்.
\frac{12}{5}y+\frac{8}{5}+7y+3=0
\frac{3y+2}{5}-ஐ 4 முறை பெருக்கவும்.
\frac{47}{5}y+\frac{8}{5}+3=0
7y-க்கு \frac{12y}{5}-ஐக் கூட்டவும்.
\frac{47}{5}y+\frac{23}{5}=0
3-க்கு \frac{8}{5}-ஐக் கூட்டவும்.
\frac{47}{5}y=-\frac{23}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{23}{5}-ஐக் கழிக்கவும்.
y=-\frac{23}{47}
சமன்பாட்டின் இரு பக்கங்களையும் \frac{47}{5}-ஆல் வகுக்கவும், இது பின்னத்தின் தலைகீழ் மதிப்பால் இரு பக்கங்களையும் பெருக்குவதற்குச் சமம்.
x=\frac{3}{5}\left(-\frac{23}{47}\right)+\frac{2}{5}
x=\frac{3}{5}y+\frac{2}{5}-இல் y-க்கு -\frac{23}{47}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=-\frac{69}{235}+\frac{2}{5}
தொகுதி எண்ணை தொகுதி மதிப்பு முறையும் பகுதி எண்ணை பகுதி மதிப்பு முறையும் பெருக்குவதன் மூலம், -\frac{23}{47}-ஐ \frac{3}{5} முறை பெருக்கவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{5}{47}
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{69}{235} உடன் \frac{2}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=\frac{5}{47},y=-\frac{23}{47}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x-3y-2=0,4x+7y+3=0
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&-3\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&-3\\4&7\end{matrix}\right))\left(\begin{matrix}5&-3\\4&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\4&7\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
\left(\begin{matrix}5&-3\\4&7\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\4&7\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\4&7\end{matrix}\right))\left(\begin{matrix}2\\-3\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-3\times 4\right)}&-\frac{-3}{5\times 7-\left(-3\times 4\right)}\\-\frac{4}{5\times 7-\left(-3\times 4\right)}&\frac{5}{5\times 7-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{47}&\frac{3}{47}\\-\frac{4}{47}&\frac{5}{47}\end{matrix}\right)\left(\begin{matrix}2\\-3\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{47}\times 2+\frac{3}{47}\left(-3\right)\\-\frac{4}{47}\times 2+\frac{5}{47}\left(-3\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{47}\\-\frac{23}{47}\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=\frac{5}{47},y=-\frac{23}{47}
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x-3y-2=0,4x+7y+3=0
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
4\times 5x+4\left(-3\right)y+4\left(-2\right)=0,5\times 4x+5\times 7y+5\times 3=0
5x மற்றும் 4x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 4-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் பெருக்கவும்.
20x-12y-8=0,20x+35y+15=0
எளிமையாக்கவும்.
20x-20x-12y-35y-8-15=0
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 20x-12y-8=0-இலிருந்து 20x+35y+15=0-ஐக் கழிக்கவும்.
-12y-35y-8-15=0
-20x-க்கு 20x-ஐக் கூட்டவும். விதிகள் 20x மற்றும் -20x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
-47y-8-15=0
-35y-க்கு -12y-ஐக் கூட்டவும்.
-47y-23=0
-15-க்கு -8-ஐக் கூட்டவும்.
-47y=23
சமன்பாட்டின் இரு பக்கங்களிலும் 23-ஐக் கூட்டவும்.
y=-\frac{23}{47}
இரு பக்கங்களையும் -47-ஆல் வகுக்கவும்.
4x+7\left(-\frac{23}{47}\right)+3=0
4x+7y+3=0-இல் y-க்கு -\frac{23}{47}-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
4x-\frac{161}{47}+3=0
-\frac{23}{47}-ஐ 7 முறை பெருக்கவும்.
4x-\frac{20}{47}=0
3-க்கு -\frac{161}{47}-ஐக் கூட்டவும்.
4x=\frac{20}{47}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{20}{47}-ஐக் கூட்டவும்.
x=\frac{5}{47}
இரு பக்கங்களையும் 4-ஆல் வகுக்கவும்.
x=\frac{5}{47},y=-\frac{23}{47}
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}