பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x, y-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

5x-14-3y=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
5x-3y=14
இரண்டு பக்கங்களிலும் 14-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
3x-2y=\frac{35}{7}
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
3x-2y=5
5-ஐப் பெற, 7-ஐ 35-ஆல் வகுக்கவும்.
5x-3y=14,3x-2y=5
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x-3y=14
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x=3y+14
சமன்பாட்டின் இரு பக்கங்களிலும் 3y-ஐக் கூட்டவும்.
x=\frac{1}{5}\left(3y+14\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=\frac{3}{5}y+\frac{14}{5}
3y+14-ஐ \frac{1}{5} முறை பெருக்கவும்.
3\left(\frac{3}{5}y+\frac{14}{5}\right)-2y=5
பிற சமன்பாடு 3x-2y=5-இல் x-க்கு \frac{3y+14}{5}-ஐப் பிரதியிடவும்.
\frac{9}{5}y+\frac{42}{5}-2y=5
\frac{3y+14}{5}-ஐ 3 முறை பெருக்கவும்.
-\frac{1}{5}y+\frac{42}{5}=5
-2y-க்கு \frac{9y}{5}-ஐக் கூட்டவும்.
-\frac{1}{5}y=-\frac{17}{5}
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் \frac{42}{5}-ஐக் கழிக்கவும்.
y=17
இரு பக்கங்களையும் -5-ஆல் பெருக்கவும்.
x=\frac{3}{5}\times 17+\frac{14}{5}
x=\frac{3}{5}y+\frac{14}{5}-இல் y-க்கு 17-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{51+14}{5}
17-ஐ \frac{3}{5} முறை பெருக்கவும்.
x=13
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{51}{5} உடன் \frac{14}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=13,y=17
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x-14-3y=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
5x-3y=14
இரண்டு பக்கங்களிலும் 14-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
3x-2y=\frac{35}{7}
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
3x-2y=5
5-ஐப் பெற, 7-ஐ 35-ஆல் வகுக்கவும்.
5x-3y=14,3x-2y=5
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\5\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}5&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}14\\5\end{matrix}\right)
\left(\begin{matrix}5&-3\\3&-2\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}14\\5\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}14\\5\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5\left(-2\right)-\left(-3\times 3\right)}&-\frac{-3}{5\left(-2\right)-\left(-3\times 3\right)}\\-\frac{3}{5\left(-2\right)-\left(-3\times 3\right)}&\frac{5}{5\left(-2\right)-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}14\\5\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-3\\3&-5\end{matrix}\right)\left(\begin{matrix}14\\5\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 14-3\times 5\\3\times 14-5\times 5\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\17\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=13,y=17
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x-14-3y=0
முதல் சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களில் இருந்தும் 3y-ஐக் கழிக்கவும்.
5x-3y=14
இரண்டு பக்கங்களிலும் 14-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
3x-2y=\frac{35}{7}
இரண்டாவது சமன்பாட்டைக் கருத்தில் கொள்ளவும். இரு பக்கங்களையும் 7-ஆல் வகுக்கவும்.
3x-2y=5
5-ஐப் பெற, 7-ஐ 35-ஆல் வகுக்கவும்.
5x-3y=14,3x-2y=5
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
3\times 5x+3\left(-3\right)y=3\times 14,5\times 3x+5\left(-2\right)y=5\times 5
5x மற்றும் 3x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 3-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் பெருக்கவும்.
15x-9y=42,15x-10y=25
எளிமையாக்கவும்.
15x-15x-9y+10y=42-25
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 15x-9y=42-இலிருந்து 15x-10y=25-ஐக் கழிக்கவும்.
-9y+10y=42-25
-15x-க்கு 15x-ஐக் கூட்டவும். விதிகள் 15x மற்றும் -15x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
y=42-25
10y-க்கு -9y-ஐக் கூட்டவும்.
y=17
-25-க்கு 42-ஐக் கூட்டவும்.
3x-2\times 17=5
3x-2y=5-இல் y-க்கு 17-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
3x-34=5
17-ஐ -2 முறை பெருக்கவும்.
3x=39
சமன்பாட்டின் இரு பக்கங்களிலும் 34-ஐக் கூட்டவும்.
x=13
இரு பக்கங்களையும் 3-ஆல் வகுக்கவும்.
x=13,y=17
இப்போது அமைப்பு சரிசெய்யப்பட்டது.