x, y-க்காகத் தீர்க்கவும்
x=1
y=4
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
5x+y=9,10x-7y=-18
பிரதியீட்டைப் பயன்படுத்தி சமன்பாடுகளின் இணையைத் தீர்ப்பதற்கு, முதலில் மாறிகளில் ஒன்றுக்கான சமன்பாடுகளில் ஒன்றைத் தீர்க்கவும். பிறகு, மற்ற சமன்பாட்டில் அந்த மாறிக்கான முடிவைப் பிரதியிடவும்.
5x+y=9
சமன்பாடுகளில் ஒன்றைத் தேர்வுசெய்து, சமக் குறியின் இடது பக்கத்தில் x-ஐத் தனிப்படுத்தி x-க்காக இதைத் தீர்க்கவும்.
5x=-y+9
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் y-ஐக் கழிக்கவும்.
x=\frac{1}{5}\left(-y+9\right)
இரு பக்கங்களையும் 5-ஆல் வகுக்கவும்.
x=-\frac{1}{5}y+\frac{9}{5}
-y+9-ஐ \frac{1}{5} முறை பெருக்கவும்.
10\left(-\frac{1}{5}y+\frac{9}{5}\right)-7y=-18
பிற சமன்பாடு 10x-7y=-18-இல் x-க்கு \frac{-y+9}{5}-ஐப் பிரதியிடவும்.
-2y+18-7y=-18
\frac{-y+9}{5}-ஐ 10 முறை பெருக்கவும்.
-9y+18=-18
-7y-க்கு -2y-ஐக் கூட்டவும்.
-9y=-36
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 18-ஐக் கழிக்கவும்.
y=4
இரு பக்கங்களையும் -9-ஆல் வகுக்கவும்.
x=-\frac{1}{5}\times 4+\frac{9}{5}
x=-\frac{1}{5}y+\frac{9}{5}-இல் y-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
x=\frac{-4+9}{5}
4-ஐ -\frac{1}{5} முறை பெருக்கவும்.
x=1
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், -\frac{4}{5} உடன் \frac{9}{5}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
x=1,y=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
5x+y=9,10x-7y=-18
தரநிலையான வடிவத்தில் சமன்பாடுகளை இட்டு, சமன்பாடுகளின் தொகுதியைத் தீர்க்க, அணிகளைப் பயன்படுத்தவும்.
\left(\begin{matrix}5&1\\10&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-18\end{matrix}\right)
சமன்பாடுகளை அணி வடிவத்தில் எழுதவும்.
inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}5&1\\10&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}9\\-18\end{matrix}\right)
\left(\begin{matrix}5&1\\10&-7\end{matrix}\right)-இன் தலைகீழ் அணி மூலம் சமன்பாட்டை இடது பெருக்கம் செய்யவும்.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}9\\-18\end{matrix}\right)
அணியின் மதிப்பும், அதன் தலைகீழியும் முற்றொருமை அணியாகும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}9\\-18\end{matrix}\right)
அணிகளை, சமக் குறிக்கு இடது கை புறம் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{5\left(-7\right)-10}&-\frac{1}{5\left(-7\right)-10}\\-\frac{10}{5\left(-7\right)-10}&\frac{5}{5\left(-7\right)-10}\end{matrix}\right)\left(\begin{matrix}9\\-18\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)அணிக்கு, நேர்மாறு அணி \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ஆகும், எனவே அணி சமன்பாட்டை பெருக்கல் அணியாகவும் மாற்றி எழுதலாம்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{45}&\frac{1}{45}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}9\\-18\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{45}\times 9+\frac{1}{45}\left(-18\right)\\\frac{2}{9}\times 9-\frac{1}{9}\left(-18\right)\end{matrix}\right)
அணிகளைப் பெருக்கவும்.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
எண்கணிதத்தைச் செய்யவும்.
x=1,y=4
அணிக் கூறுகள் x மற்றும் y-ஐப் பிரித்தெடுக்கவும்.
5x+y=9,10x-7y=-18
நீக்கிவிடுதல் மூலம் தீர்ப்பதற்கு, மாறிகளில் ஒன்றின் குணங்கள் இரு சமன்பாடுகளிலும் சமமாக இருக்க வேண்டும், எனவே ஒரு சமன்பாட்டை மற்ற சமன்பாட்டிலிருந்து கழிக்கும் போது, அந்த மாறியை ரத்துசெய்யவும்.
10\times 5x+10y=10\times 9,5\times 10x+5\left(-7\right)y=5\left(-18\right)
5x மற்றும் 10x-ஐச் சமமாக்க, முதல் சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 10-ஆலும் இரண்டாவது சமன்பாட்டின் ஒவ்வொரு பக்கத்திலுமுள்ள எல்லா உறுப்புகளையும் 5-ஆலும் பெருக்கவும்.
50x+10y=90,50x-35y=-90
எளிமையாக்கவும்.
50x-50x+10y+35y=90+90
சமக் குறியின் ஒவ்வொரு பக்கத்திலும் உள்ள ஒரே மாதிரியான உறுப்புகளைக் கழிப்பதன் மூலம் 50x+10y=90-இலிருந்து 50x-35y=-90-ஐக் கழிக்கவும்.
10y+35y=90+90
-50x-க்கு 50x-ஐக் கூட்டவும். விதிகள் 50x மற்றும் -50x ஆகியவை ரத்து செய்யப்படுகின்றன, எனவே தீர்க்கக்கூடிய ஒரேயொரு மாறியைக் கொண்ட சமன்பாட்டை விட்டுவைக்கிறது.
45y=90+90
35y-க்கு 10y-ஐக் கூட்டவும்.
45y=180
90-க்கு 90-ஐக் கூட்டவும்.
y=4
இரு பக்கங்களையும் 45-ஆல் வகுக்கவும்.
10x-7\times 4=-18
10x-7y=-18-இல் y-க்கு 4-ஐப் பிரதியிடவும். முடிவாகக் கிடைக்கின்ற சமன்பாட்டில் ஒரு மாறி மட்டுமே உள்ளதால், நேரடியாக x-க்குத் தீர்க்கலாம்.
10x-28=-18
4-ஐ -7 முறை பெருக்கவும்.
10x=10
சமன்பாட்டின் இரு பக்கங்களிலும் 28-ஐக் கூட்டவும்.
x=1
இரு பக்கங்களையும் 10-ஆல் வகுக்கவும்.
x=1,y=4
இப்போது அமைப்பு சரிசெய்யப்பட்டது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}